网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同加载路径下的AZ31B镁合金的成形极限
英文标题:Forming limit of AZ31B magnesium alloy under different loading paths
作者:阎昱 李嘉欣 
单位:北方工业大学 
关键词:AZ31B镁合金 成形极限 轧制方向 单向拉伸:双向拉伸 十字形试件 
分类号:TG301
出版年,卷(期):页码:2021,46(2):40-46
摘要:
为了分析实际成形过程中AZ31B镁合金产生破裂的原因,并为改善工艺条件提供实用可靠的判据,采用实验和有限元模拟相结合的方法研究AZ31B镁合金的成形极限。分别对沿轧制方向、垂直于轧制方向、与轧制方向成45°的3种方向的试件进行单向拉伸实验,获得AZ31B镁合金的工程应力-工程应变曲线,获得材料的真实应力-真实应变曲线和塑性变形阶段的塑性应变。采用十字形试件进行了不同加载路径下的双向拉伸实验,并进行了相应的有限元模拟仿真,提取实验和模拟结果绘制成形极限图,对有限元模拟和实验结果进行对比分析,发现实验和有限元模拟结果基本吻合,左侧成形极限图高于右侧。
The forming limit of AZ31B magnesium alloy was obtained by combining experiment and finite element simulation to analyze the causes of cracks in the actual forming process and provide practical and reliable criteria for improving process conditions. Then, the uniaxial tensile tests were conducted on the specimens along the rolling direction, perpendicular to the rolling direction, and 45° from the rolling direction to obtain the engineering stress-engineering strain curve of AZ31B magnesium alloy, the true stress-true strain curve of materials and the plastic strain at the plastic deformation stage. Furthermore, the biaxial tensile tests under different loading paths were performed by using the cross-shaped specimens, and the corresponding finite element simulation was carried out. Finally, the experimental and simulation results were extracted to draw the forming limit diagram, and the finite element simulation and experimental results were compared and analyzed. The result shows that the experiment and finite element simulation results are basically consistent, and the forming limit curve on the left is higher than that on the right.
基金项目:
国家自然科学基金资助项目(51475003);北京市自然科学基金委员会-北京市教育委员会联合资助项目(KZ200010009041)
作者简介:
阎昱(1983-),女,博士,副教授,E-mail:anneyan@126.com;通讯作者:李嘉欣(1995-),女,硕士研究生,E-mail:448634002@qq.com
参考文献:
[1]万敏,周贤宾. 复杂加载路径下板料屈服强化与成形极限的研究进展[J]. 塑性工程学报,2000,7 (2):35-39.
Wan M, Zhou X B. Research progress on the yielding, hardening and forming limit of sheet metals under complex loading paths [J]. Journal of Plasticity Engineering, 2000, 7 (2): 35-39.
[2]韩非,万敏,吴向东. 板料成形极限理论与实验研究进展[J]. 塑性工程学报, 2006, 13(5):80-85.
Han F, Wan M, Wu X D. Theoretical and experimental investigation progress on the forming limit of sheet metal forming [J]. Journal of Plasticity Engineering, 2006, 13 (5): 80-85.
[3]余胜娟,周旭东. 板料成形性的研究现状和发展趋势[J]. 锻压装备与制造技术,2007,42(6):14-17.
Yu S J, Zhou X D. Research state and its development trends of sheet metal workability [J]. China Metalforming Equipment & Manufacturing Technology, 2007, 42(6): 14-17.
[4]王海波,万敏,阎昱, 等. 参数求解方法对屈服准则的各向异性行为描述能力的影响[J]. 机械工程学报, 2013, 49(24):45-53.
Wang H B, Wan M, Yan Y, et al. Effect of the solving method of parameters on the description ability of the yield criterion about the anisotropic behavior [J]. Journal of Mechanical Engineering, 2013, 49(24):45-53.
[5]王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学,2011.
Wang H. Acquisition Method of Forming Limit Diagram and Its Application in Sheet Metal Forming [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
[6]徐园慧. 不同加载路径下金属板料的成形极限[D]. 北京:北方工业大学,2017.
Xu Y H. The Forming Limit of Sheet Metal under Different Loading Paths [D]. Beijing: North China University of Technology, 2017.
[7]石宝东,彭艳,韩宇, 等. AZ31镁合金轧制板材各向异性力学性能研究[J]. 燕山大学学报, 2015, 39(3):36-40,49.
Shi B D, Peng Y, Han Y, et al. Investigation on anisotropic mechanical behavior of AZ31 Mg alloy rolling sheet [J]. Journal of Yanshan University, 2015, 39(3): 36-40,49.
[8]杨冲,彭艳,杨硕, 等. AZ31镁合金轧制板材各向异性行为的晶体塑性研究[J]. 燕山大学学报, 2016, 40(2):123-129.
Yang C, Peng Y, Yang S, et al. Study on anisotropic mechanical behavior of AZ31 Mg alloy sheet based on crystal plasticity modeling [J]. Journal of Yanshan University, 2016, 40(2):123-129.
[9]Mahboubkhah M. Determination of the forming limit diagrams by using the fem and experimental method[J]. Journal of Mechanical Science and Technology, 2013, 27(5):1437-1442.
[10]陆建军,朱益陶,衣杰栋, 等. DC05 板料成形极限曲线的测定及应用[J].锻压技术,2019,44(12):27-32.
Lu J J, Zhu Y T, Yi J D, et al. Measurement and application of forming limit curve for DC05 sheet metal [J]. Forging & Stamping Technology, 2019, 44 (12): 27-32.
[11]韩非,万敏,吴向东,等. 基于极限应力分析的十字形双向拉伸试件设计[J]. 北京航空航天大学学报, 2007, 33(5):600-604.
Han F, Wan M, Wu X D, et al. FEM design of cruciform biaxial tensile specimen based on limit stress analysis [J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 600-604.
[12]吴向东,万敏,周贤宾. 十字形双向拉伸试验有限元模拟及分析[J]. 塑性工程学报, 2001, 8(2):57-59.
Wu X D, Wan M, Zhou X B. FEM simulation and analysis of cruciform biaxial tensile test [J]. Journal of Plasticity Engineering, 2001, 8 (2): 57-59.
[13]于勇,万敏,周贤宾. 基于极限应变分析的十字形试件有限元设计[J]. 北京航空航天大学学报, 2001, 27(1):105-108.
Yu Y, Wan M, Zhou X B. FEM design of cruciform biaxial tensile specimen based on limit strain analysis [J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27 (1): 105-108.
[14]韩非,万敏,吴向东,等.中心区减薄的十字形试件拉伸性能研究[J].塑性工程学报,2007,14(6):55-58.
Han F, Wan M, Wu X D, et al. Investigation of tensile formability of thinned sheet metal and cruciform specimen with thinned central test region [J].Journal of Plasticity Engineering, 2007,14 (6): 55-58.
[15]王光阳. 涉及各向异性和厚向应力的板料变形行为研究[D].北京:北方工业大学,2017.
Wang G Y. The Research on Sheet Deformation Behavior Involving the Anisotropy and Thick Stress [D] .Beijing: North University of Technology, 2017.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9