网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于满意度函数的强力旋压壁厚偏差稳健设计优化
英文标题:Robust design optimization on wall thickness deviation for power spinning based on satisfaction function
作者:杨锋 李睿 朱立坚 张建 赵亦东 杜长林 
单位:上海新力动力设备研究所 
关键词:强力旋压 满意度函数 壁厚偏差 响应曲面 30Cr3高强度钢 
分类号:TG376
出版年,卷(期):页码:2021,46(2):130-135
摘要:

为提高强力旋压筒体成形质量的稳定性、得到整体尺寸精度更稳定的旋压筒体,在Simufact.forming有限元软件中进行强力旋压数值模拟,选择30Cr3高强度钢作为旋压材料,筛选优化工艺参数为减薄率、进给速率与轴向错距,并以旋压筒体壁厚偏差为优化目标。通过引入熵权理论对传统的双响应曲面进行改进,设计了一种更优的满意度函数对强力旋压筒体壁厚偏差进行稳健优化设计。应用GRG法对得到的满意度函数进行求解,得到壁厚稳定的强力旋压优化参数。结果表明:减薄率为57.8%、进给速率为1.232 mm·s-1、轴向错距为3.57 mm时,得到的旋压筒体壁厚偏差均值为0.051 mm、标准差为0.0172 mm,得到的满意度函数值为0.8218,此时旋压筒体的壁厚更接近名义值,整体壁厚也更均匀。在对有限元仿真的试验验证中,其相对误差较小、可靠性表现良好,对旋压成形工艺有较大的指导意义。

In order to improve the stability of forming quality for power spinning cylinder and obtain a spinning cylinder with the more stable overall dimensional accuracy, the power spinning was numerically simulated by finite element software Simufact.forming. Then, taking 30Cr3 high strength steel as the spinning material, the optimized process parameters were thinning ratio, feeding rate and axial offset, and the optimization target was the wall thickness deviation of spinning cylinder. Furthermore, the traditional double response surface was improved by introducing entropy weight theory, and a better satisfaction function was designed for the robust optimization design on the wall thickness deviation of power spinning cylinder. Finally, the GRG method was applied to solve the satisfaction function to obtain the power spinning optimization parameters with the stable wall thickness. The results show that when the thinning ratio is 57.8%, the feeding rate is 1.232 mm·s-1, and the axial offset is 3.57 mm, the average deviation value of wall thickness for spinning cylinder is 0.051 mm, the standard deviation is 0.0172 mm, and the satisfaction function value is 0.8218. At this time, the wall thickness of spinning cylinder is closer to the nominal value, and the overall wall thickness is more uniform. Through the test verification of finite element simulation, the relative error is smaller, the reliability performance is good, and it has great guiding significance for spinning process.

基金项目:
作者简介:
杨锋(1993-),男,硕士,助理工程师,E-mail:122297706@qq.com
参考文献:

[1]寸文渊, 张晶, 崔保金, 等. 基于CAE的导管精确扩口成形技术[J]. 锻压技术, 2020, 45(10): 73-79. Cun W Y, Zhang J, Cui B J, et al. Precise flaring forming technology of catheter based on CAE[J]. Forging & Stamping Technology, 2020, 45(10): 73-79. [2]杨文华, 廖哲, 郝花蕾, 等. 3A21铝合金锥形件旋压成形工艺[J]. 锻压技术, 2019, 34(10): 88-94. Yang W H, Liao Z, Hao H L, et al. Spinning forming process of 3A21 aluminum alloy conical parts [J]. Forging & Stamping Technology, 2019, 34(10): 88-94. [3]张成, 杨海成, 韩冬, 等. 钛合金旋压技术在国内航天领域的应用及发展[J]. 固体火箭技术, 2013, 36(1): 127-132. Zhang C, Yang H C, Han D, et al. Applications and development of titanium alloys spinning technology in domestic aerospace field[J]. Journal of Solid Rocket Technology, 2013, 36(1): 127-132. [4]王大力, 郭亚明, 李亦楠, 等. 大型薄壁筒形件对轮旋压成形数值模拟及成形精度分析[J]. 锻压技术, 2020, 45(3): 47-54. Wang D L, Guo Y M, Li Y N, et al. Numerical simulation and forming precision analysis on counter-roller spinning for large thin-walled cylindrical parts [J]. Forging & Stamping Technology, 2020, 45(3):47-54. [5]詹梅, 石丰, 邓强, 等. 铝合金波纹管无芯模缩径旋压成形机理与规律[J]. 塑性工程学报, 2014, 21(2): 108-115. Zhan M, Shi F, Deng Q, et al. Forming mechanism and rules of mandreless neck-spinning on corrugated pipes[J]. Journal of Plasticity Engineering, 2014, 21(2): 108-115. [6]王雨. GH3030高温合金壁厚渐变锥形回转件强力旋压成形质量研究[D]. 宁波: 宁波大学, 2018. Wang Y. Research on Forming Quality of Conical Rotatory Parts with Continuously Variable Wall Thickness of GH3030 Super alloy During Power Spinning [D]. Ningbo: Ningbo University, 2018. [7]陈实. 筒形件强力旋压成形关键参数对成形质量影响分析及其优化[D]. 杭州: 浙江大学, 2015. Chen S. The Analysis and Optimization of Key Parameters in Tube Spinning Process[D]. Hangzhou: Zhejiang University, 2015. [8]张涛, 樊文欣, 朱芹, 等. 基于BP神经网络的连杆衬套强力旋压回弹量预测[J]. 特种铸造及其有色合金, 2017, 37(4): 380-382. Zhang T, Fan W X, Zhu Q, et al. Prediction of springback of connecting rod bushing based on BP neural network[J]. Special-cast and Non-ferrous Alloys, 2017, 37(4): 380-382. [9]吕伟. 锡青铜连杆衬套错距旋压关键工艺参数对成形质量的分析及其优化[D]. 太原: 中北大学, 2017. Lyu W. Analysis and Optimization of the Effects of the Key Process Parameters on the Forming Quality of QSn7-0.2 Connecting Rob Bushing Stagger Spinning [D]. Taiyuan: North University of China, 2017. [10]夏琴香, 张义龙, 肖刚锋, 等. 基于Abaqus的旋压件壁厚的自动测量方法[J]. 华南理工大学学报:自然科学版, 2020, 48(6): 1-7. Xia Q X, Zhang Y L, Xiao G F, et al. Automatic measurement method of thickness of spun workpieces based on abaqus [J]. Journal of South China University of Technology:Natural Science Edition, 2020, 48(6): 1-7. [11]秦杰士. 30Cr3SiNiMoNA钢的研制简介[J]. 宇航材料工艺, 1984, (6):67-80. Qin J S. Brief introduction of 30Cr3SiNiMoNA steel [J]. Aerospace Materials and Technology, 1984, (6):67-80. [12]杨锋, 樊文欣, 李涵, 等. 基于ABAQUS连杆衬套强力旋压残余应力研究[J]. 塑性工程学报, 2018, 25(3): 96-101. Yang F, Fan W X, Li H, et al. ABAQUS based residual stress analysis of connecting rod bushing in power spinning [J].Journal of Plasticity Engineering, 2018, 25(3): 96-101. [13]田口玄一. 质量工程学概论[M]. 魏锡禄,王和福,译. 北京: 中国对外翻译出版公司, 1985. Taguchi. Introduction to Quality Engineering[M]. Translated by Wei X L, Wang H F. Beijing:China Translation & Publishing Corporation, 1985. [14]Hill W J, Hunter W G. A review of response surface methodology a literature survey[J]. Technometrics, 1966, 8(4): 571-590. [15]崔凤奎, 苏涌翔, 王晓强, 等. 冷滚打花键表层加工硬化双响应曲面-满意度函数的优化分析[J]. 塑性工程学报, 2018, 25(3): 129-135. Cui F K, Su Y X, Wang X Q, et al. Analysis on optimization of double-response surface-satisfaction function of surface work-hardening for cold roll-beating spline [J]. Journal of Plasticity Engineering, 2018, 25(3): 129-135. [16]伍建军, 黄裕林, 谢周伟, 等. 基于改进满意度函数的柔顺机构多响应稳健优化设计[J]. 机械设计, 2016, 33(8): 38-42. Wu J J, Huang Y L, Xie Z W, et al. Multiple responsive robust optimization design of compliant mechanism based on improved satisfaction function[J]. Journal of Machine Design, 2016, 33(8): 38-42.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9