[1]寸文渊, 张晶, 崔保金, 等. 基于CAE的导管精确扩口成形技术[J]. 锻压技术, 2020, 45(10): 73-79. Cun W Y, Zhang J, Cui B J, et al. Precise flaring forming technology of catheter based on CAE[J]. Forging & Stamping Technology, 2020, 45(10): 73-79. [2]杨文华, 廖哲, 郝花蕾, 等. 3A21铝合金锥形件旋压成形工艺[J]. 锻压技术, 2019, 34(10): 88-94. Yang W H, Liao Z, Hao H L, et al. Spinning forming process of 3A21 aluminum alloy conical parts [J]. Forging & Stamping Technology, 2019, 34(10): 88-94. [3]张成, 杨海成, 韩冬, 等. 钛合金旋压技术在国内航天领域的应用及发展[J]. 固体火箭技术, 2013, 36(1): 127-132. Zhang C, Yang H C, Han D, et al. Applications and development of titanium alloys spinning technology in domestic aerospace field[J]. Journal of Solid Rocket Technology, 2013, 36(1): 127-132. [4]王大力, 郭亚明, 李亦楠, 等. 大型薄壁筒形件对轮旋压成形数值模拟及成形精度分析[J]. 锻压技术, 2020, 45(3): 47-54. Wang D L, Guo Y M, Li Y N, et al. Numerical simulation and forming precision analysis on counter-roller spinning for large thin-walled cylindrical parts [J]. Forging & Stamping Technology, 2020, 45(3):47-54. [5]詹梅, 石丰, 邓强, 等. 铝合金波纹管无芯模缩径旋压成形机理与规律[J]. 塑性工程学报, 2014, 21(2): 108-115. Zhan M, Shi F, Deng Q, et al. Forming mechanism and rules of mandreless neck-spinning on corrugated pipes[J]. Journal of Plasticity Engineering, 2014, 21(2): 108-115. [6]王雨. GH3030高温合金壁厚渐变锥形回转件强力旋压成形质量研究[D]. 宁波: 宁波大学, 2018. Wang Y. Research on Forming Quality of Conical Rotatory Parts with Continuously Variable Wall Thickness of GH3030 Super alloy During Power Spinning [D]. Ningbo: Ningbo University, 2018. [7]陈实. 筒形件强力旋压成形关键参数对成形质量影响分析及其优化[D]. 杭州: 浙江大学, 2015. Chen S. The Analysis and Optimization of Key Parameters in Tube Spinning Process[D]. Hangzhou: Zhejiang University, 2015. [8]张涛, 樊文欣, 朱芹, 等. 基于BP神经网络的连杆衬套强力旋压回弹量预测[J]. 特种铸造及其有色合金, 2017, 37(4): 380-382. Zhang T, Fan W X, Zhu Q, et al. Prediction of springback of connecting rod bushing based on BP neural network[J]. Special-cast and Non-ferrous Alloys, 2017, 37(4): 380-382. [9]吕伟. 锡青铜连杆衬套错距旋压关键工艺参数对成形质量的分析及其优化[D]. 太原: 中北大学, 2017. Lyu W. Analysis and Optimization of the Effects of the Key Process Parameters on the Forming Quality of QSn7-0.2 Connecting Rob Bushing Stagger Spinning [D]. Taiyuan: North University of China, 2017. [10]夏琴香, 张义龙, 肖刚锋, 等. 基于Abaqus的旋压件壁厚的自动测量方法[J]. 华南理工大学学报:自然科学版, 2020, 48(6): 1-7. Xia Q X, Zhang Y L, Xiao G F, et al. Automatic measurement method of thickness of spun workpieces based on abaqus [J]. Journal of South China University of Technology:Natural Science Edition, 2020, 48(6): 1-7. [11]秦杰士. 30Cr3SiNiMoNA钢的研制简介[J]. 宇航材料工艺, 1984, (6):67-80. Qin J S. Brief introduction of 30Cr3SiNiMoNA steel [J]. Aerospace Materials and Technology, 1984, (6):67-80. [12]杨锋, 樊文欣, 李涵, 等. 基于ABAQUS连杆衬套强力旋压残余应力研究[J]. 塑性工程学报, 2018, 25(3): 96-101. Yang F, Fan W X, Li H, et al. ABAQUS based residual stress analysis of connecting rod bushing in power spinning [J].Journal of Plasticity Engineering, 2018, 25(3): 96-101. [13]田口玄一. 质量工程学概论[M]. 魏锡禄,王和福,译. 北京: 中国对外翻译出版公司, 1985. Taguchi. Introduction to Quality Engineering[M]. Translated by Wei X L, Wang H F. Beijing:China Translation & Publishing Corporation, 1985. [14]Hill W J, Hunter W G. A review of response surface methodology a literature survey[J]. Technometrics, 1966, 8(4): 571-590. [15]崔凤奎, 苏涌翔, 王晓强, 等. 冷滚打花键表层加工硬化双响应曲面-满意度函数的优化分析[J]. 塑性工程学报, 2018, 25(3): 129-135. Cui F K, Su Y X, Wang X Q, et al. Analysis on optimization of double-response surface-satisfaction function of surface work-hardening for cold roll-beating spline [J]. Journal of Plasticity Engineering, 2018, 25(3): 129-135. [16]伍建军, 黄裕林, 谢周伟, 等. 基于改进满意度函数的柔顺机构多响应稳健优化设计[J]. 机械设计, 2016, 33(8): 38-42. Wu J J, Huang Y L, Xie Z W, et al. Multiple responsive robust optimization design of compliant mechanism based on improved satisfaction function[J]. Journal of Machine Design, 2016, 33(8): 38-42.
|