网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于单向拉伸的半固化GLARE层板成形性能分析
英文标题:Analysis on forming performance of semi-cured GLARE laminate based on uniaxial tensile
作者:李磊 郎利辉 轩永波 王洪锋 
单位:北京航空航天大学 中国人民解放军93236部队 中国人民解放军93175部队 
关键词:纤维金属层板 GLARE层板 拉伸性能 成形性能 半固化 
分类号:TG306
出版年,卷(期):页码:2021,46(2):200-205
摘要:
通过半固化工艺制备GLARE层板以提高其成形性能,成形后再固化以达到使用要求。为了了解半固化工艺制备的GLARE层板的成形性能,利用单向拉伸试验方法,分别对不同铺层厚度的GLARE2和GLARE3层板进行力学性能测试。试验结果表明,半固化层板的拉伸曲线依然符合传统层板的双线性特征。半固化工艺制备的GLARE2层板的成形性能相较于固化的GLARE2层板提升较小,相反,GLARE3层板的成形性能提升比较明显。通过半固化工艺可以有效地降低屈服强度、提高伸长率、降低成形抗力。特别是GLARE3-3/2层板,具有相对较高的成形性能,其屈服强度为153.0 MPa、抗拉强度为301.7 MPa、伸长率为5.9%。这说明半固化制备工艺可以有效地改善GLARE层板的成形性能,实现大曲率零件的成形。
The GLARE laminate was prepared by the semi-curing process to improve its formability, and then it is cured after forming to meet the requirements in service. In order to understand the formability of GLARE laminate prepared by the semi-curing process, the mechanical properties of GLARE2 and GLARE3 laminates with different layer thicknesses were tested by the uniaxial tensile test method. The test results show that the tensile curve of semi-cured laminate still conforms to the bilinear characteristics of traditional laminate, and the formability of GLARE2 laminate prepared by the semi-curing process is less improved than that of the cured GLARE2 laminate. On the contrary, the formability of GLARE3 laminate is significantly improved, and the semi-curing process effectively reduces the yield strength, increases the elongation, and reduces the forming resistance. In particular, the GLARE3-3/2 laminate has relatively high formability with the yield strength of 153.0 MPa, the tensile strength of 301.7 MPa and the elongation of 5.9%. Thus, the semi-curing preparation process effectively improves the formability of GLARE laminate and realizes the forming of parts with large curvature.
基金项目:
国家自然科学基金资助项目(51675029)
作者简介:
李磊(1985-),男,博士研究生,工程师,E-mail:blue-view@163.com;通讯作者:郎利辉(1970-),男,博士,教授,E-mail:lang@buaa.edu.cn
参考文献:
[1]郭琦,徐国富,黄继武, 等.新型Al-Mg-Sc-Zr合金显微组织和性能研究[J].稀有金属,2019,43(3):255-264.
Guo Q, Xu G F,Huang J W, et al. Properties and microstructure of novel Al-Mg-Sc-Zr alloy [J]. Chinese Journal of Rare Metals, 2019,43(3):255-264.
[2]闫辰侃,曲寿江,冯艾寒, 等.钛及钛合金形变孪晶的研究进展[J].稀有金属,2019,43(5):449-460.
Yan C K, Qu S J, Feng A H, et al. Recent advances of deformation twins in titanium and titanium alloys[J]. Chinese Journal of Rare Metals, 2019,43(5):449-460.
[3]Alderliesten R C, Benedictus R. Fiber/metal composite technology for future primary aircraft structures[J]. Journal of Aircraft,2008, 45(4): 1182-1189.
[4]Vlot A, Gunnink J W. Fibre Metal Laminates[M]. Netherlands: Springer, 2001.
[5]王永贵,梁宪珠. 纤维金属层板技术与大型飞机[A]. 中国硅酸盐学会. 第十八届玻璃钢/复合材料学术年会论文集[C]. 北京:中国硅酸盐学会,2010.
Wang Y G, Liang X Z. Fiber metal laminates and large airplane[A]. Chinese Ceramic Society. Proceedings of the 18th Annual Conference on Fiberglass/Composites[C]. Beijing: Chinese Ceramic Society, 2010.
[6]郑兴伟,卢佳,庄欣,等. 航空用玻璃纤维铝合金层板成形技术研究进展[J]. 材料导报,2018, 32(S2): 422-427.
Zheng X W, Lu J, Zhuang X, et al. A review on the forming technology of aerospace glass-reinforced aluminum laminates [J]. Material Reports, 2018, 32(S2):422-427.
[7]刘建光,张嘉振,岳广全,等. 纤维金属层板曲面零件成形技术研究[J]. 航空制造技术,2019, 62(16): 46-52.
Liu J G, Zhang J Z, Yue G Q, et al. Research on forming technology of fiber metal laminate curved parts [J]. Aeronautical Manufacturing Technology, 2019, 62(16):46-52.
[8]陶杰,李华冠,潘蕾,等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报,2015, 47(5): 626-636.
Tao J, Li H G, Pan L, et al. Review on research and development of fiber metal laminates [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5):626-636.
[9]Sinmaz Elik T, Avcu E, Bora M Z, et al. A review: Fiber metal laminates, background, bonding types and applied test methods[J]. Materials & Design, 2011, 32(7): 3671-3685.
[10]Zafar R, Lihui L, Rongjing Z. Analysis of hydro-mechanical deep drawing and the effects of cavity pressure on quality of simultaneously formed three-layer Al alloy parts[J]. The International Journal of Advanced Manufacturing Technology,2015, 80(9-12): 2117-2128.
[11]Zhang R, Lang L, Zafar R, et al. Investigation into thinning and spring back of multilayer metal forming using hydro-mechanical deep drawing (HMDD) for lightweight parts[J]. International Journal of Advanced Manufacturing Technology,2016, 82(5-8): 817-826.
[12]Hu Y, Zheng X, Wang D, et al. Application of laser peen forming to bend fibre metal laminates by high dynamic loading[J]. Journal of Materials Processing Technology, 2015, 226: 32-39.
[13]Russig C, Bambach M, Hirt G, et al. Shot peen forming of fiber metal laminates on the example of GLARE [J]. International Journal of Material Forming, 2014, 7(4): 425-438.
[14]Gisario A, Barletta M. Laser forming of glass laminate aluminium reinforced epoxy (GLARE): On the role of mechanical, physical and chemical interactions in the multi-layers material[J]. Optics and Lasers in Engineering, 2018, 110: 364-376.
[15]Gresham J, Cantwell W, Cardew-Hall M J, et al. Drawing behaviour of metal-composite sandwich structures[J]. Composite Structures, 2006, 75(1-4): 305-312.
[16]Mosse L, Compston P, Cantwell W J, et al. The effect of process temperature on the formability of polypropylene based fibre-metal laminates[J]. Composites Part A, 2005, 36(8): 1158-1166.
[17]Sexton A, Cantwell W, Kalyanasundaram S. Stretch forming studies on a fibre metal laminate based on a self-reinforcing polypropylene composite[J]. Composite Structures, 2012, 94(2): 431-437.
[18]曾一畔,郎利辉,刘世琛,等. 半固化GLARE层板橡皮垫成形工艺过程及其数值模拟研究[J]. 锻压技术, 2018,43(11):66-71.
Zeng Y P, Lang L H, Liu S C, et al. Investigation on rubber pad forming process and its numerical simulation for semi-cured GLARE laminates [J]. Forging & Stamping Technology, 2018, 43(11):66-71.
[19]介苏朋. 纤维金属层板(FMLs)结构制造方法研究[D]. 西安:西北工业大学, 2006.
Jie S P. Investigation on Fabrication Method of Fiber Metal Laminates (FMLs) [D]. Xian: Northwestern Polytechnical University, 2006.
[20]ASTM D3039-2000, Annual book of ASTM standards 1-13[S].
[21]王永贵. 纤维金属层板及其在大型飞机上的应用[A]. 中国力学学会.第十五届全国复合材料学术会议论文集:下册[C].哈尔滨:中国力学学会,2008.
Wang Y G. Fiber metal laminate and its application in large aircraft [A]. The Chinese Society of Theoretical and Applied Mechanics. Proceedings of the 15th National Conference on Composites: Volume 2[C]. Haierbin: The Chinese Society of Theoretical and Applied Mechanics, 2008.
[22]ASTM E8/E8M—2016, Standard test methods for tension testing of metallic materials[S].
[23]Bikakis G, Savaidis A, Zalimidis P, et al. Influence of the metal volume fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact[J]. IOP Conference Series: Materials Science and Engineering, 2016, 161(1): 12055.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9