网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
钛铝复合板横向共挤压翘曲变形分析
英文标题:Analysis on warping deformation for Ti/Al laminated composite plate in transverse co-extrusion
作者:孙凯 薛新 
单位:福州大学 机械工程及自动化学院 
关键词:共挤压 钛铝复合板 翘曲角 焊合压应力标准差 翘曲变形 
分类号:TG379
出版年,卷(期):页码:2021,46(3):56-63
摘要:

 针对双金属横向共挤压成形过程中钛铝复合板的翘曲变形问题,采用Deform-3D数值分析,进行塑性变形分析和成形工艺参数优化,提出了主变形的铝材挤出翘曲角和界面压力焊合的压应力标准差作为翘曲变形的评价策略。数值模拟结果表明:翘曲角与挤压速度、温度分别呈正相关和负相关的演变规律,即高温低速的共挤压制备工艺有助于减小钛铝复合板的翘曲变形行为;同时,翘曲角越小,焊合区钛铝复合板的焊合压应力标准差越小。采用优化后相对较优的一组工艺参数(挤压温度为480 ℃,挤压速度为1 mm·s-1),进行钛铝复合板横向共挤压物理实验,结果表明,翘曲程度与数值模拟结果吻合,验证了数值仿真结果的有效性。

  For the warping deformation problem of Ti/Al laminated composite plate in transverse co-extrusion process, the plastic deformation analysis and the process parameters optimization were numerically analyzed by software Deform-3D, and the warping angle of deformable aluminum material and the standard deviation of interface welding stress were proposed as the evaluation strategy of warping deformation. The simulation results show that the warping angle has the positive and negative correlation evolvement rules with extrusion speed and temperature respectively, that is, the “high temperature and low speed” co-extrusion preparation process helps to reduce the warping deformation behavior of Ti/Al laminated composite plate. At the same time, the smaller the warping angle is, the smaller the standard deviation of interface welding stress is for Ti/Al laminated composite plate in welding zone. Furthermore, the physical experiment of transverse co-extrusion of Ti/Al laminated composite plate was conducted by a relatively optimized set of process parameters (the extrusion temperature is 480 ℃, the extrusion speed is 1 mm·s-1), and the results show that the experimental warping degree is in a good agreement with the numerical simulation results to verify the validity of the numerical simulation results.

基金项目:
国家自然科学基金资助项目(51705080);福建省自然科学基金面上项目(2018J01764)
作者简介:
孙凯(1993-),男,硕士研究生 E-mail:N180220058@fzu.edu.cn 通讯作者:薛新(1983-),男,博士,副教授 E-mail: xin@fzu.edu.cn
参考文献:

 [1]Zhang C Q, Robson J D, Prangnell P B. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4[J]. Journal of Materials Processing Technology, 2016, 231: 382-388.


 


[2]Vaidya W V, Horstmann M, Ventzke V, et al. Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications[J]. Journal of Materials Science, 2010, 45(22): 6242-6254.


 


[3]Fronczek D M, Chulist R, Litynskadobrzynska L, et al. Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints[J]. Journal of Materials Engineering & Performance, 2016, 25(8): 3211-3217.


 


[4]Fronczek D M, Chulist R, Litynskadobrzynska L, et al. Microstructural and phase composition differences across the interfaces in Al/Ti/Al explosively welded clads[J]. Metallurgical & Materials Transactions A, 2017, 48: 1-12.


 


[5]Zhao H, Yu M, Jiang Z, et al. Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding[J]. Journal of Alloys and Compounds, 2019, 789: 139-149.


 


[6]宗影影. 钛合金置氢增塑机理及其高温变形规律研究[D]. 哈尔滨:哈尔滨工业大学,2007.


 


Zong Y Y. Study on the Hydrogen Enhanced Plasticity Mechanism and Deformation Behaviors of Titanium Alloys at High Temperatures[D]. HarbinHarbin Institute of Technology, 2007.


 


[7]Chulist R, Fronczek D M, Szulc Z, et al. Texture transformations near the bonding zones of the threelayer Al/Ti/Al explosively welded clads[J]. Materials Characterization, 2017, 129: 242-246.


 


[8]Yu M, Zhao H, Jiang Z, et al. Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds[J]. Journal of Materials Processing Technology, 2019, 270: 274-284.


 


[9]Yu H, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding[J]. Journal of Materials Research, 2017, 32(19): 3761-3768.


 


[10]Ma M, Huo P, Liu W C, et al. Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Materials Science and Engineering: A, 2015, 636: 301-310.


[11]Ng H P, Przybilla T, Schmidt C, et al. Asymmetric accumulative roll bonding of aluminium-titanium composite sheets[J]. Materials Science & Engineering A, 2013, 576(1): 306-315.


 


[12]Kim T B, Tane M, Suzuki S, et al. Pore morphology of porous AlTi alloy fabricated by continuous casting in hydrogen atmosphere[J]. Materials Transactions, 2010, 51(10): 1871-1877.


 


[13]Park K, Kim D, Kim K, et al. Behavior of intermetallic compounds of AlTi composite manufactured by spark plasma sintering [J]. Materials, 2019, 12(2): 1-14.


 


[14]Zhong X, Feng J, Yao S. Temperature field modeling and experimental study on ultrasonic consolidation for AlTi foil[J]. Journal of Mechanical Science and Technology, 2019, 33(7): 1-8.


 


[15]Grittner N, Striewe B, Von hehl A, et al. Characterization of the interface of coextruded asymmetric aluminumtitanium composite profiles[J]. Materialwissenschaft and Werkstofftechnik, 2014, 45(12): 1054-1060.


 


[16]Dietrich D, Grittner N, Mehner T, et al. Microstructural evolution in the bonding zones of coextruded aluminium/titanium[J]. Journal of Materials Science, 2013, 49(6): 2442-2455.


 


[17]Wu D, Chen R S, Han E H. Bonding interface zone of MgGdY/MgZnGd laminated composite fabricated by equal channel angular extrusion[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S2): 613-618.


 


[18]孙伟领,丁金根,边翊,等. 铝合金控制臂锻造工艺参数优化与缺陷分析[J]. 锻压技术,201944(5)29-34.


 


Sun W L, Ding J G, Bian Y, et al. Optimization on forging process parameters and defect analysis for aluminum alloy control arm[J]. Forging & Stamping Technology, 2019, 44(5): 29-34.


 


[19]Bagshawa N, Punshona C. Prediction and control of distortion and residual stresses in electron beam welding[J]. Rare Metal Materials and Engineering, 2011, 40(4): 26-29.


 


[20]单云,吴斌. 一种适用于超高速冲压新型产品的冲裁模具结构[J]. 锻压技术,202045(3)119-124.


 


Shan Y, Wu B. New blanking die structure for ultra high speed stamping[J]. Forging & Stamping Technology, 2020, 45(3): 119-124.


 


[21]陈磊,王廷坤,王宗申,等. 气门成形过程数值模拟与挤压模具结构优化[J]. 锻压技术,202045(9)105-112.


 


Chen L, Wang T K, Wang Z S, et al. Numerical simulation on valve forming process and structure optimization on extrusion mold[J]. Forging & Stamping Technology, 2020, 45(9): 105-112.


 


[22]Liu Z, Li L, Li S, et al. Simulation analysis of porthole die extrusion process and die structure modifications for an aluminum profile with high length-width ratio and small cavity[J]. Materials, 2018, 11(9): 1-20.


 


[23]Pinter T, El Mehtedi M. Constitutive equations for hot extrusion of AA6005A, AA6063 and AA7020 alloys[J]. Key Engineering Materials, 2011, 491: 43-50.


 


[24]Van Haaften W M, Magnin B, Kool W H, et al. Constitutive behavior of ascast AA1050, AA3104, and AA5182[J]. Metallurgical and Materials Transactions A, 2002, 33(7): 1971-1980. 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9