[1]Zhang C Q, Robson J D, Prangnell P B. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4[J]. Journal of Materials Processing Technology, 2016, 231: 382-388.
[2]Vaidya W V, Horstmann M, Ventzke V, et al. Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications[J]. Journal of Materials Science, 2010, 45(22): 6242-6254.
[3]Fronczek D M, Chulist R, Litynskadobrzynska L, et al. Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints[J]. Journal of Materials Engineering & Performance, 2016, 25(8): 3211-3217.
[4]Fronczek D M, Chulist R, Litynskadobrzynska L, et al. Microstructural and phase composition differences across the interfaces in Al/Ti/Al explosively welded clads[J]. Metallurgical & Materials Transactions A, 2017, 48: 1-12.
[5]Zhao H, Yu M, Jiang Z, et al. Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding[J]. Journal of Alloys and Compounds, 2019, 789: 139-149.
[6]宗影影. 钛合金置氢增塑机理及其高温变形规律研究[D]. 哈尔滨:哈尔滨工业大学,2007.
Zong Y Y. Study on the Hydrogen Enhanced Plasticity Mechanism and Deformation Behaviors of Titanium Alloys at High Temperatures[D]. Harbin:Harbin Institute of Technology, 2007.
[7]Chulist R, Fronczek D M, Szulc Z, et al. Texture transformations near the bonding zones of the threelayer Al/Ti/Al explosively welded clads[J]. Materials Characterization, 2017, 129: 242-246.
[8]Yu M, Zhao H, Jiang Z, et al. Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds[J]. Journal of Materials Processing Technology, 2019, 270: 274-284.
[9]Yu H, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding[J]. Journal of Materials Research, 2017, 32(19): 3761-3768.
[10]Ma M, Huo P, Liu W C, et al. Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Materials Science and Engineering: A, 2015, 636: 301-310.
[11]Ng H P, Przybilla T, Schmidt C, et al. Asymmetric accumulative roll bonding of aluminium-titanium composite sheets[J]. Materials Science & Engineering A, 2013, 576(1): 306-315.
[12]Kim T B, Tane M, Suzuki S, et al. Pore morphology of porous AlTi alloy fabricated by continuous casting in hydrogen atmosphere[J]. Materials Transactions, 2010, 51(10): 1871-1877.
[13]Park K, Kim D, Kim K, et al. Behavior of intermetallic compounds of AlTi composite manufactured by spark plasma sintering [J]. Materials, 2019, 12(2): 1-14.
[14]Zhong X, Feng J, Yao S. Temperature field modeling and experimental study on ultrasonic consolidation for AlTi foil[J]. Journal of Mechanical Science and Technology, 2019, 33(7): 1-8.
[15]Grittner N, Striewe B, Von hehl A, et al. Characterization of the interface of coextruded asymmetric aluminumtitanium composite profiles[J]. Materialwissenschaft and Werkstofftechnik, 2014, 45(12): 1054-1060.
[16]Dietrich D, Grittner N, Mehner T, et al. Microstructural evolution in the bonding zones of coextruded aluminium/titanium[J]. Journal of Materials Science, 2013, 49(6): 2442-2455.
[17]Wu D, Chen R S, Han E H. Bonding interface zone of MgGdY/MgZnGd laminated composite fabricated by equal channel angular extrusion[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S2): 613-618.
[18]孙伟领,丁金根,边翊,等. 铝合金控制臂锻造工艺参数优化与缺陷分析[J]. 锻压技术,2019,44(5):29-34.
Sun W L, Ding J G, Bian Y, et al. Optimization on forging process parameters and defect analysis for aluminum alloy control arm[J]. Forging & Stamping Technology, 2019, 44(5): 29-34.
[19]Bagshawa N, Punshona C. Prediction and control of distortion and residual stresses in electron beam welding[J]. Rare Metal Materials and Engineering, 2011, 40(4): 26-29.
[20]单云,吴斌. 一种适用于超高速冲压新型产品的冲裁模具结构[J]. 锻压技术,2020,45(3):119-124.
Shan Y, Wu B. New blanking die structure for ultra high speed stamping[J]. Forging & Stamping Technology, 2020, 45(3): 119-124.
[21]陈磊,王廷坤,王宗申,等. 气门成形过程数值模拟与挤压模具结构优化[J]. 锻压技术,2020,45(9):105-112.
Chen L, Wang T K, Wang Z S, et al. Numerical simulation on valve forming process and structure optimization on extrusion mold[J]. Forging & Stamping Technology, 2020, 45(9): 105-112.
[22]Liu Z, Li L, Li S, et al. Simulation analysis of porthole die extrusion process and die structure modifications for an aluminum profile with high length-width ratio and small cavity[J]. Materials, 2018, 11(9): 1-20.
[23]Pinter T, El Mehtedi M. Constitutive equations for hot extrusion of AA6005A, AA6063 and AA7020 alloys[J]. Key Engineering Materials, 2011, 491: 43-50.
[24]Van Haaften W M, Magnin B, Kool W H, et al. Constitutive behavior of ascast AA1050, AA3104, and AA5182[J]. Metallurgical and Materials Transactions A, 2002, 33(7): 1971-1980.
|