[1]王明海,李世永,郑耀辉.超声铣削钛合金材料表面粗糙度研究[J].农业机械学报,2014,45(6):341-346,340.
Wang M H, Li S Y, Zheng Y H. Surface roughness of titanium alloy under ultrasonic vibration milling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(6):341-346,340.
[2]张飞,赵运才.超声表面滚压改善45#钢表层特性及疲劳性能的研究[J].表面技术,2017,46(9):185-190.
Zhang F, Zhao Y C. Research on surface characteristics and fatigue properties of 45# steel by ultrasonic surface rolling[J]. Surface Technology, 2017,46(9):185-190.
[3]刘佳佳,姜兴刚,高泽, 等.高速旋转超声椭圆振动侧铣削振幅对钛合金表面完整性影响的研究[J].机械工程学报,2019,55(11):215-223.
Liu J J, Jiang X G, Gao Z,et al. Investigation of the effect of vibration amplitude on the surface integrity in highspeed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019,55(11):215-223.
[4]Zheng J X, Liu C S, Zhang Y M. Basic research on ultrasonic extrusion for 45 steel shaft[J]. Key Engineering Materials, 2011,1024(910):288-292.
[5]Wang T, Wang D P, Liu G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing[J]. Applied Surface Science,2008,255(5):1824-1829.
[6]史学刚,鲁世红,张炜.铝合金超声波喷丸成形制件表面完整性研究[J].中国机械工程,2013,24(22):3100-3104.
Shi X G, Lu S H, Zhang W. Study on surface integrity of aluminum alloy ultrasonic shot peening forming workpieces[J]. China Mechanical Engineering, 2013,24(22):3100-3104.
[7]贾振元,宿友亮,张博宇, 等.基于径向基函数神经网络的CFRP切削力预测[J].复合材料学报,2016,33(3):516-524.
Jia Z Y, Su Y L, Zhang B Y,et al. Prediction of cutting force in CFRP based on radial basis function neural network[J]. Acta Materiae Compositae Sinica, 2016,33(3):516-524.
[8]王晓强,荣莎莎,刘佳, 等.超声滚挤压轴承套圈表面粗糙度响应曲面预测模型[J].塑性工程学报,2018,25(3):54-59.
Wang X Q, Rong S S, Liu J,et al. Surface roughness response prediction model of ultrasonic roll extrusion bearing ring[J]. Journal of Plasticity Engineering, 2018,25(3):54-59.
[9]刘伟,邓朝晖,万林林, 等.基于正交试验-遗传神经网络的陶瓷球面精密磨削参数优化[J].中国机械工程,2014,25(4):451-455.
Liu W, Deng C H, Wan L L, et al. Parameter optimization on precision grinding of ceramic sphere using orthogonal experiment and genetic neural network[J]. China Mechanical Engineering, 2014,25(4): 451-455.
[10]Jing J T, Feng P F, Wei S L, et al. Investigation on surface morphology model of Si3N4 ceramics for rotary ultrasonic grinding machining based on the neural network[J]. Applied Surface Science, 2017,396(1):85-94.
[11]张厚祖,樊文欣,郭佩剑, 等.QSn7-0.2锡青铜连杆衬套车削加工参数优化[J].特种铸造及有色合金,2019,39(3):346-348.
Zhang H Z, Fan W X, Guo P J,et al. Optimization of machining parameters of tin bronze connecting rod bushing[J]. Special Casting & Nonferrous Alloys, 2019,39(3):346-348.
[12]麻成标.TBM滚刀刀圈模锻成形仿真参数优化[J].锻压技术,2019,44(7):7-14.
Ma C B. Optimization on simulation parameters for TBM disc cutter ring in die forging[J]. Forging & Stamping Technology, 2019,44(7):7-14.
[13]伍文进,徐中云,滕凯, 等.基于正交实验与BP神经网络的2AL2激光切割工艺参数优化[J].机床与液压,2018,46(10):13-17.
Wu W J, Xu Z Y, Teng K,et al. Process parameters optimization for 2AL2 aluminum alloy laser cutting based on rthogonal experiment and BP neural network[J]. Machine Tool & Hydraulics, 2018,46(10):13-17.
[14]崔凤奎,苏涌翔,王晓强,等.冷滚打花键表层加工硬化双响应曲面-满意度函数的优化分析[J].塑性工程学报,2018,25(3):129-135.
Cui F K, Su Y X, Wang X Q,et al. Analysis on optimization of doubleresponse surfacesatisfaction function of surface workhardening for cold rollbeating spline[J]. Journal of Plasticity Engineering, 2018,25(3):129-135.
[15]郭华锋,李菊丽,孙涛.基于 BP神经网络的光纤激光切割切口粗糙度预测[J].激光技术,2014,38(6):798-803.
Guo H F, Li J L,Sun T. Roughness prediction of kerf cut with fiber laser based on BP artificial neural networks[J]. Laser Technology, 2014,38(6):798-803.
|