网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超大直径贮箱箱底整体旋压成形技术
英文标题:Integral spinning forming technology of storage box bottom with super large diameter
作者:周磊 杨国平 刘凤财 王玮婷 刘云峰 李杰 
单位:首都航天有限机械公司 
关键词:超大直径 贮箱箱底 多道次 剪切旋压 普通旋压 
分类号:T306
出版年,卷(期):页码:2021,46(3):151-157
摘要:

 目前,国内大型贮箱箱底采用瓜瓣顶盖拼焊的方法制造,存在制造可靠性不足、生产效率低等问题。针对大型贮箱箱底制造现状,以某型号运载火箭贮箱箱底作为研究对象,设计了先预成形、后旋压成形的工艺方案,并提出了“一道次剪旋+多道次普旋的旋压工艺方案,通过有限元仿真分析及工艺试验验证了超大直径贮箱箱底整体旋压成形技术的可行性。结果表明:采用预成形方案能够有效抑制零件边缘起皱,采用剪切旋压与普通旋压相结合的成形工艺能够实现箱底的高精度成形。箱底中心区域采用剪切旋压,构件形状可控性好,模具贴合良好;预成形法兰的边缘区域刚度高,采用多道次普通旋压,既能够达到收边贴模的目的,又能够避免边缘减薄量过大的问题。

 At present, the large storage box bottom is manufactured by tailor-welding the melon flap top cover in China, which has problems such as insufficient manufacturing reliability and low production efficiency. Based on the current manufacture status of the large storage box bottom, for the storage box bottom for a certain type of carrier rocket, the process scheme of first preforming and then spinning was designed, and the spinning process scheme of “one-pass shear spinning +multi-pass conventional spinning” was proposed. Then, the possibility of integral spinning forming technology for storage box bottom with super large diameter was verified by finite element analysis and process experiments. The results show that the preforming scheme effectively restrains the wrinkling of part edge, and the high precision forming of storage box bottom is realized by the forming process conbinated shear spinning and conventional spinning. In addition, the center area of box bottom adopts shear spinning which has good controllability of component shape and good die fit, and the edge area of pre-formed flange has high rigidity and adopts multi-pass conventional spinning which achieves the purpose of closing and attaching die and avoid the problem of excessive edge thinning. 

基金项目:
装备发展部预研共用技术项目
作者简介:
周磊(1990-),男,硕士,工程师 E-mail:zllz20130105@163.com
参考文献:

 [1]栾恩杰. 中国航天发展政策和展望[J]. 中国航天,2001,(10):4-6.


 


Luan E J. Policy and prospect of China aerospace development[J]. Aerospace China,2001,(10):4-6.


 


[2]朱平萍,刘宪力. 大型贮箱结构及工艺性研究[J]. 航天制造技术, 2011, (3):42-45,58.


 


Zhu P P, Liu X L. Structural and technological research on large tank[J]. Aerospace Manufacturing Technology, 2011, (3):42-45,58.


 


[3]王颖. 焊接制造缺陷对运载火箭贮箱承载力影响的研究[D]. 天津:天津大学,2014.


 


Wang Y. Research of the Influence of the Welding Manufacturing Defects on the Bearing Capacity of the Launch Vehicle Tank[D]. Tianjin:Tientsin University, 2014.


 


[4]姚君山,蔡益飞,李程刚,等. 运载火箭箭体结构制造技术发展与应用[J]. 航空制造技术,2007, (10):36-42.


 


Yao J S, Cai Y F, Li C G, et al. Development and application of manufacturing technology for rocket structure of lauch venicle[J]. Aeronautical Manufacturing Technology,2007, (10):36-42.


 


[5]王成和,刘克璋,周路.旋压技术[M]. 福建:福建科学技术出版社, 2017.


 


Wang C H, Liu K Z, Zhou L. Spinning Technology[M]. FujianFujian Science and Technology Press,2017.


 


[6]陈建华,马飞,任顺奎,等. 大直径薄壁铝合金封头剪切旋压成形缺陷分析[J]. 精密成形工程,2016, (2):64-67.


 


Chen J H, Ma F, Ren S K, et al. Defect analysis of shear spinning of Aluminum alloy thinwalled head with large diameter[J]. Journal of Netshape Forming Engineering,2016, (2): 64-67.


 


[7]林波,谷建民,周尚荣,等. 超半球壳体多道次拉深旋压工艺研究[J].机械工程学报,2011, 47(6):86-91.


 


Lin B, Gu J M, Zhou S R, et al. Research on process of multipass drawspinning of hyperhemispherical shell[J]. Journal of Mechanical Engineering, 2011, 47(6):86-91.


 


[8]孙昂. 曲母线形薄壁零件旋压工艺研究[D].哈尔滨:哈尔滨工业大学,2014.


 


Sun A. Research on Parts with the Shape of Curvilinear Generatrix and Thinwall Part during Spinning Forming Process[D]. Harbin: Harbin Institute of Technology,2014.


 


[9]杨剑,李新和,易兆祥,等. 2250 mm薄壁封头外环约束无模旋压的壁厚精度[J].锻压技术,2019,44(3):59-64.


 


Yang JLi X HYi Z Xet al.Wall thickness accuracy of 2250 mm thinwalled head by dieless spinning with outer ring restrainning[J]. Forging & Stamping Technology2019,44(3):59-64.


 


[10]Wang L, Long H. Roller path design by tool compensation in multipass conventional spinning[J]. Materials & Design, 2013, 46(4):645-653.


 


[11]宋晓飞,詹梅,蒋华兵,等. 铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理[J]. 塑性工程学报,2013, 20(1):31-36.


 


Song X F, Zhan M, Jiang H B, et al. Forming mechanism of defects in spinning of large complicated thinwall aluminum alloy shells[J]. Journal of Plasticity Engineering,2013, 20(1):31-36.


 


[12]杨文华,廖哲,郝花蕾,等.3A21铝合金锥形件旋压成形工艺[J]. 锻压技术,2019,44(10):88-93.


 


Yang W HLiao ZHao H Let al.Spinning forming process of 3A21 aluminum alloy conical parts[J]. Forging & Stamping Technology2019,44(10):88-93.


 


[13]曾向,马继山. 铜合金厚板封头零件的旋压加工[J]. 精密成形工程,2015,7(6):81-85,91.


 


Zeng X, Ma J S. Spinning processing of copper alloy thick plate head parts[J]. Journal of Netshape Forming Engineering,2015,7(6):81-85,91.


 


[14]史敏,赵亦希,孔庆帅,等. 薄壁铝合金封头挡板辅助旋压成形方法[J]. 上海交通大学学报,2015,43(10):1497-1503.


 


Shi M, Zhao Y X, Kong Q S, et al. Baffleassistant spinning method for thinwalled aluminum alloy seal head[J]. Journal of Shanghai Jiaotong University,2015,43(10):1497-1503.


 


[15]李继贞,刘德贵,王健飞. 强力旋压成形技术在航空领域的新进展[J]. 航空制造技术,2014,(10):40-44.


 


Li J Z, Liu D G, Wang J F. New progress of power spinning technology in aeronautics[J]. Aeronautical Manufacturing Technology, 2014,(10):40-44.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9