网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧机独立传动系统的PID与状态观测组合控制
英文标题:PID and state observation composite control on rolling mill independent driving system
作者:贾权 郭计云 徐青云 
单位:1.山西大同大学 机电工程学院 2.山西大同大学 煤炭工程学院 
关键词:轧机传动系统 同步控制 参数自学习PID控制 状态观测 极点配置 
分类号:TP273
出版年,卷(期):页码:2021,46(3):167-173
摘要:

 为了提高轧机多电机传动系统的同步性,提出了参数自学习PID与状态观测的组合控制方法,分析了轧机主传动系统的工作原理,建立了电机-轧辊的二质量旋转体模型。设计了参数自学习PID控制的同步控制器,基于BP神经网络进行参数自学习,实现了实时的最佳PID控制。为了消除传动轴扭振引起的系统震荡,设计了状态观测器,对轧辊转矩进行预先估计和补偿;同时,将状态观测值进行反馈,实现极点配置,获得了期望的极点位置和控制性能。经验证,与单独使用参数自学习PID控制器相比,组合控制器在启动阶段的调节时间降低了81.8%;在受扰阶段的最大同步误差降低了87.4%,调节时间减少了29.3%。以上数据说明PID与状态观测的组合控制器能够实现较好的同步控制效果,且抗干扰能力较好。

 In order to improve the synchronization of multi-motor driving system for rolling mill, a combined control method of parameter self-learning PID and state observation was proposed, the working principle of the main driving system of rolling mill was analyzed, and a motor-roll two-mass rotating body model was established. Then, a synchronism controller for parameter self-learning PID was designed, which was based on BP neutral network for parameter self-learning and realized the best real-time PID control. In order to eliminate the system shock caused by torsional vibration of driving shaft, a state observer was designed to estimate and compensate the roll torque in advance. Meanwhile, the state observation value was fed back to realize the pole configuration and obtain the desired pole position and control performance. It is verified that compared with using the parameter self-learning PID controller alone, the adjusting time of combined controller in the startup stage decreases by 81.8%, and the maximum synchronization error in the disturbed stage decreases by 87.4%, and the adjusting time decreases by 29.3%. The above data shows that the combined controller of PID and state observation achieve better synchronization control effect and better anti-interference ability.

基金项目:
2020年大同市科技计划立项资助项目(2020022);2018年大同市科技计划立项资助项目(2018104);山西大同大学2017年度科研基金资助项目(2017K8)
作者简介:
贾权(1979-),男,硕士,讲师 E-mail:jq.88@163.com 通讯作者:徐青云(1976-),男,博士,副教授 E-mail:dtxuqingyun@126.com
参考文献:

 [1]赵翱东,孙俊.轧机双驱进给系统同步控制方法[J].锻压技术, 2019, 44(7):139-143.


 


Zhao A D, Sun J.Synchronization control method for double-drive feeding system of rolling mill [J].Forging & Stamping Technology, 2019, 44(7):139-143.


 


[2]于学洋.轧辊独立驱动的高速轧机控制系统研究与实现[D].无锡:江南大学,2016.


 


Yu X Y.Implementation and Research on High-speed Rolling Mill Control System with Separately Driven Rollers [D].Wuxi: Jiangnan University, 2016.


 


[3]周颖,孙超,王冬生,.网络化电机同步的改进型交叉耦合预测控制[J].电机与控制学报,2019,23(12):101-107.


 


Zhou Y, Sun C, Wang D S, et al.Improved cross-coupling predictive control of networked motor synchronization [J].Electric Machines and Control, 2019,23(12):101-107.


 


[4]何晋,曹鲁成,李珂,.改进型偏差耦合结构的多电机同步控制系统[J].兵工自动化,2020,39(3):41-44.


 


He J, Cao L C, Li K, et al.Multi-motor synchronization control system with improved deviation coupling structure [J].Ordnance Industry Automation2020,39(3):41-44.


 


[5]廖能超,周志琨,赵现朝,.陷波器在低刚性伺服系统共振抑制的应用[J].机械设计与研究,2015,31(3):36-39.


 


Liao N C, Zhou Z K, Zhao X C, et al.Application of notch filter for vibration suppress in low rigidity servo system [J].Machine Design and Research, 2015,31(3):36-39.


 


[6]王鑫鑫,闫晓强.基于扩张状态观测器的轧机振动抑振器研究[J].振动与冲击,2019,38(5):1-6.


 


Wang X X, Yan X Q.Vibration suppressor of rolling mills based on extended state observer [J].Journal of Vibration and Shock, 2019,38(5):1-6.


 


[7]李东亮,缪仲翠,王志浩,.基于模型预测的多电机弱磁同步控制策略研究[J].电机与控制应用,2019,46(11):7-12.


 


Li D L, Miao Z C, Wang Z H, et al.Synchronous flux weakening control strategy of multi-motor system based on model prediction[J].Electric Machines & Control Application, 2019,46(11):7-12.


 


[8]张若青,胡俊霞.基于偏差耦合控制的电机同步控制实验研究[J].组合机床与自动化加工技术,2018(2):100-104.


 


Zhang R Q, Hu J X.Motor synchronous control experimental study based on deviation coupling control[J].Modular Machine Tool & Automatic Manufacturing Technique, 2018(2):100-104.


 


[9]杨保海,文秀海,睢利铭.冷连轧机主传动系统扭转振动控制方法分析[J].机械设计与制造,2018(6):188-191.


 


Yang B H, Wen X H, Sui L M.Analysis of control strategy for torsional vibration in the driving system of rolling mill [J].Machinery Design & Manufacture, 2018(6):188-191.


 


[10]刘振兴.一种基于模糊神经网络的PI双闭环SPWM逆变器控制方法[J].工业控制计算机,2019,32(12):85-87.


 


Liu Z X.A PI double closed-loop SPWM inverter control method based on fuzzy neural network[J].Industrial Control Computer, 2019,32(12):85-87.


 


[11]王辰宇.基于BP神经网络的特种车辆控制系统CCGA焊点空洞失效预测研究[D].太原:中北大学,2019.


 


Wang C Y.Cavity Failure Prediction of CCGA Solder Joint in Special Vehicle Control System Based on BP Neural Network [D].Taiyuan: North University of China, 2019.


 


[12]吴瑞,杜佳璐,孙玉清,.基于状态反馈线性化和ESO的船舶航向跟踪控制[J].大连海事大学学报,2019,45(3):93-99.


 


Wu R, Du J L, Sun Y Q.Ship course tracking control based on the state feedback linearization and ESO [J].Journal of Dalian Maritime University, 2019,45(3):93-99.


 


[13]王翔,吴益飞,高阳,.基于扩展状态观测器的伺服系统特征建模和自适应滑模控制[J].南京理工大学学报,2019,43(3):261-268.


 


Wang X, Wu Y F, Gao Y, et al.Extended state observe-based characteristic modeling and adaptive sliding-mode control for servo systems [J].Journal of Nanjing University of Science and Technology,2019,43(3):261-268.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9