网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
35CrMoV钢高温塑性变形行为及其本构方程建立
英文标题:High temperature plastic deformation behavior and constitutive equation establishment of 35CrMoV steel
作者:伦建伟 刘伟 杨洋 郭诚 
单位:1.沈阳科金特种材料有限公司 2. 中国科学院金属研究所 精密管材研究部 
关键词:35CrMoV钢  高温塑性变形  变形激活能 压缩变形 本构方程 
分类号:TG111.7
出版年,卷(期):页码:2021,46(3):216-220
摘要:

 为了研究35CrMoV钢的高温变形行为,借助Gleelble 3800型热模拟试验机,在应变速率为0.01~10 s-1、变形温度为950~1150 ℃的条件下进行轴向单道次高温压缩试验,并根据试验结果绘制35CrMoV钢的流动应力-应变曲线。分析研究了变形温度、应变速率对流动应力的影响,计算了变形激活能Q及参数nAα的取值。试验结果表明:35CrMoV钢在950~1150 ℃进行压缩试验时,存在动态再结晶和动态回复两种流动应力-应变关系,当应变速率为0.010.1 s-1时,其流动应力-应变曲线主要表现为动态再结晶型;当应变速率为110 s-1时,其流动应力-应变曲线主要表现为动态回复型。在试验条件下获得35CrMoV钢的平均变形激活能Q310.433 kJ·mol-1,建立了用于描述35CrMoV钢流动应力、应变速率和变形温度三者之间关系的本构方程。

 In order to study the high temperature plastic deformation behavior of 35CrMoV steel, the axial single pass high temperature compression test was conducted by thermal simulator Gleelble 3800 at the strain rates of 0.01-10 s-1 and the deformation temperatures of 950-1150 ℃, and the rheological stress-strain curves of 35CrMoV steel were drawn according to test results. Then, the influences of deformation temperature and strain rate on the rheological stress were studied, and the deformation activation energy Q and the parameters of n, A and α were calculated. The test results show that when 35CrMoV steel is subjected to compression test at 950-1150 ℃, there are two kinds of rheological stress-strain relationships for dynamic recrystallization and dynamic recovery. When the strain rates are 0.01 and 0.1 s-1, the rheological stress-strain curvess are mainly of dynamic recrystallization type, and when the strain rates are 1 and 10 s-1, the rheological stress-strain curves are mainly of dynamic recovery type. In addition, under the test conditions, the average deformation activation energy Q of 35CrMoV steel is 310.433 kJ·mol-1, and the constitutive equation is established to describe the relationship among rheological stress, strain rate and deformation temperature of 35CrMoV steel.

基金项目:
作者简介:
伦建伟(1982-),男,硕士,工程师 E-mail:lunjianwei123@163.com
参考文献:

 [1]张冬旭, 温志勋, 岳珠峰. GH3230高温合金热变形行为及本构模型研究[J]. 稀有金属, 2014, 38(6): 986-992.


 


Zhang D X, Wen Z X, Yue Z F. Hot deformation behavior and constitutive model of GH3230 alloy[J]. Chinese Journal of Rare Metals, 2014, 38 (6): 986-992.


 


[2]Wang H, Dai W, Hewavitharana L G. A finite difference method for studying thermal deformation in a double-layered thin film with imperfect interfacial contact exposed to ultrashort pulsed lasers[J]. International Journal of Thermal Sciences, 2008, 47(1): 7-24.


 


[3]肖文近, 付甲, 陈晓燕. 铸态42CrMo钢热压缩本构模型的建立[J]. 热加工工艺, 2011, 40(9): 105-107.


 


Xiao W J, Fu J, Chen X Y. Establishment of constitutive model for as-cast 42CrMo steel during hot compression deformation[J]. Hot Working Techonology, 2011, 40(9): 105-107.


 


[4]龚志华, 何禛, 包汉生, . 2Cr12NiMo1W1V超临界汽轮机叶片用耐热钢的热变形行为[J]. 钢铁, 2019, 54(3): 63-68.


 


Gong Z H, He Z, Bao H S, et al. Hot deformation behavior of 2Cr12NiMo1W1V heat resistant steel used for supercritical steam turbine blades[J]. Iron and Steel, 2019, 54(3): 63-68.


 


[5]孙朝阳, 李亚民, 祥雨, . 316LN高温热变形行为与热加工图研究[J]. 稀有金属材料与工程, 2016, 45(3): 688-695.


 


Sun C Y, Li Y M, Xiang Y, et al. Hot deformation behavior and hot processing maps of 316LN stainless steel[J]. Rare Metal Materials and Engineering, 2016, 45(3): 688-695.


 


[6]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica Sinica, 1966, 14(9): 1136-1138.


 


[7]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Physics D-Applied Physics, 1944,15(1): 22-32.


 


[8]Poirier J P. 晶体的高温塑性变形[M]. 关德林, . 大连: 大连理工大学出版社, 1989.


 


Poirier J P. High Temperature Plastic Deformation of Crystal[M]. Translated by Guan D L. Dalian: Dalian University of Technology Press, 1989.


 


[9]苏新生, 徐文帅, 黄顺喆, . 40CrNi2MoE钢的高温塑性变形特征[J]. 机械工程材料, 2015, 39(6): 90-94.


 


Su X S, Xu W S, Huang S Z, et al. Hot plastic deformation characteristics of 40CrNi2MoE steel [J]. Materials for Mechanical Engineering, 2015,39(6): 90-94.


 


[10]王志蒙, 王玉辉, 曹文全, . GCr15轴承钢热变形行为及加工图[J]. 材料热处理学报, 2017, 38(1): 191-197.


 


Wang Z M, Wang Y H, Cao W Q, et al. Hot deformation behavior and processing maps of GCr15 bearing steel [J]. Transactions of Materials and Heat treatment, 2017, 38(1): 191-197.


 


[11]孔得磊, 雷丽萍, 曾攀. 40Mn钢热变形行为及加工图研究[J].锻压技术,2019 ,44(3):122-132.


 


Kong D LLei L PZeng P. Research on hot deformation behavior and processing map for 40Mn steel[J].Forging & Stamping Technology2019 , 44(3):122-132.


 


[12]张雪敏, 曹福洋, 岳红彦, . TC11钛合金热变形本构方程的建立[J]. 稀有金属材料与工程, 2013, 45(5): 937-941.


 


Zhang X M, Cao F Y, Yue H Y, et al. Establishment of constitutive equations of TC11 alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2013, 45(5): 937-941.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9