网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金管材超低温介质压力胀形行为
英文标题:Behavior of ultra-low temperature medium bulging for aluminum alloy tube
作者:凡晓波 王旭刚 陈险烁 苑世剑 
单位:大连理工大学 哈尔滨工业大学 
关键词:铝合金异形管件 超低温介质压力胀形 胀形性能 变形均匀性 
分类号:TG394
出版年,卷(期):页码:2021,46(4):1-5
摘要:

针对铝合金复杂异形管件常温成形易开裂的难题,利用铝合金在超低温下伸长率与硬化指数同时提高的双增效应,提出了铝合金异形管件超低温介质压力成形方法。通过建立管材超低温介质压力胀形装置,测试了6061铝合金管材在液氮温度(-196 ℃)条件下的胀形性能;结合数值模拟,分析了铝合金管材在超低温条件下的自由胀形行为。结果表明:铝合金管材在超低温(-196 ℃)条件下,胀形性能显著提高,膨胀率由常温下的17.4%增加至34.5%,提高了近1倍;超低温下铝合金管材的硬化能力同样提高,变形更均匀;相同变形阶段,随着硬化指数n值的增加,自由胀形变形区的极限应变和应变梯度均逐渐降低。

For the problem of easy cracking for aluminum alloy complex special-shaped tube, an ultra-low temperature medium bulging method was proposed by the double-increasing effect of simultaneous increase of elongation and hardening index for aluminum alloy at ultra-low temperature, and the bulging performance of 6061 aluminum alloy tube under the condition of liquid nitrogen temperature (-196 ℃) was tested by establishing the device of ultra-low temperature medium bulging for tube. Then, the corresponding free bulging behavior of aluminum alloy tube at ultra-low temperature was analyzed by experiment and FEM. The results show that the bulging performance of aluminum alloy tube is significantly improved under ultra-low temperature condition (-196 ℃), and the expansion rate is increased from 17.4% at normal temperature to 34.5% which is increased by nearly onetime. Furthermore, the hardening ability of aluminum alloy tube at ultra-low temperature is also enhanced, and the deformation is more uniform. At the same deformation stage, the ultimate strain and strain gradient of free bulging deformation zone are gradually reduced with the increasing of hardening index value of n.
 

基金项目:
国家重点研发计划项目(2019YFA0708804);中央高校基本科研业务费专项资金资助(DUT20ZD101)
作者简介:
凡晓波(1987-),男,博士,副研究员 E-mail:xbfan@dlut.edu.cn
参考文献:


[1]Yuan S J, Fan X B. Developments and perspectives on the precision forming processes for ultra-large size integrated components
[J]. International Journal of Extreme Manufacturing, 2019,1: 1-18.



[2]刘勇,耿会程,朱彬,等. 高强铝合金高效热冲压工艺研究进展
[J].锻压技术,2020,45(7):1-12.


Liu Y, Geng H C, Zhu B, et al. Research progress on high efficiency hot stamping process for high strength aluminum alloy
[J]. Forging & Stamping Technology, 2020,45(7):1-12.



[3]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys
[J]. Materials & Design, 2014, 56: 862-871.



[4]Manabe K, Fuchizawa S. Further development on tube hydroforming
[J]. 60 Excellent Inventions in Metal Forming, 2015,4:387-393.



[5]Lee M G, Korkolis Y P, Kim J H. Recent developments in hydroforming technology
[J]. Proc.IMechE, Part B: J.Engineering Manufacture, 2015, 229(4): 572-596.



[6]KoM. Hydroforming for Advanced Manufacturing
[M]. Cambridge:Woodhead Publishing,2008.



[7]Hirsch J. Recent development in aluminium for automotive applications
[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002.



[8]Zheng K L, Politis D J, Wang L L, et al. A review on forming techniques for manufacturing lightweight complexdshaped aluminium panel components
[J]. International Journal of Lightweight Materials and Manufacture, 2018,1: 55-80.



[9]Cai Y, Wang X S, Yuan S J. Analysis of surface roughening behavior of 6063 aluminum alloy by tensile testing of a trapezoidal uniaxial specimen
[J]. Materials Science and Engineering: A, 2016, 672: 184-193.



[10]束飞,拓建峰,张宇岑,等. 飞机铝合金深锥型面零件多道次充液拉深技术
[J].精密成形工程,2016,8(5):96-102.


Shu F, Tuo J F, Zhang Y C, et al. Multi-step hydrodynamic deep drawing of aluminium alloy conical part with deep cavity
[J]. Journal of Netshape Forming Engineering, 2016,8(5):96-102.



[11]刘晓滕,赵佳蕾,孙有政,等. 中间退火对Al-Mg-Si系铝合金汽车板组织和性能的影响
[J].金属热处理,2020,45(10):119-124.


Liu X T, Zhao J L, Sun Y Z, et al. Effect of intermediate annealing on microstructure and properties of Al-Mg-Si series aluminum alloy automobile sheet
[J]. Heat Treatment of Metals, 2020,45(10):119-124.


[12]Cheng W J, Liu W, Yuan S J. Deformation behavior of Al-Cu-Mn alloy sheets under biaxial stress at cryogenic temperatures
[J]. Materials Science and Engineering: A, 2019, 759:357-367.



[13]陈鼎,陈振华. 铝合金在低温下的力学性能
[J]. 宇航材料工艺, 2000,(4):1-7.


Chen D, Chen Z H. Mechanical properties of pure aluminum alloys at cryogenic temperatures
[J]. Aerospace Materials & Technology, 2000,(4):1-7.



[14]Cheng W J, Liu W, Fan X B, et al. Cooperative enhancements in ductility and strain hardening of a solution-treated Al-Cu-Mn alloy at cryogenic temperatures
[J]. Materials Science and Engineering: A, 2020, 790:1-14.

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9