网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金Ω形波纹管轴向低压压形工艺
英文标题:Axial low pressure forming process for aluminum alloy Ω-shaped bellows
作者:王彪 孙磊 林才渊 初冠南 李继光 胡德友 
单位:哈尔滨工业大学(威海)  哈工大(威海)创新创业园有限责任公司 天津航天长征火箭制造有限公司 
关键词:波纹管 轴向低压压形 铝合金 加载路径 成形内压 轴向进给 
分类号:TG39
出版年,卷(期):页码:2021,46(4):56-62
摘要:

为了得到具有大直径大膨胀率且壁厚减薄小的铝合金Ω形波纹管,提出了一种轴向低压压形工艺,其核心思想是通过合理匹配成形内压与轴向进给间的关系来提高波纹管的成形质量。同时,通过实验与数值模拟分析结合的方式,基于ABAQUS有限元分析软件,建立了波纹管轴向低压压形过程的有限元模型,并基于波纹管轴向低压压形过程中的等效应力及壁厚分布情况,分析了3种不同加载路径对波纹管成形过程的影响,获得了成形内压与轴向进给间最佳的匹配关系。结果表明,由加载路径3阶梯形匹配关系所得波纹管的形状精度高,最大减薄率为12.1%,验证了工艺的可行性。

In order to obtain the aluminum alloy Ω-shaped bellows with large diameter, large expansion rate and small wall thickness thinning value, an axial low pressure forming process was proposed, and the core idea was to improve the forming quality of bellows by reasonably matching the relationship between internal pressure and axial feeding. At the same time, the finite element model of bellows in axial low pressure forming process was established by the combination of experiment and numerical simulation analysis and based on the finite element analysis software ABAQUS. And based on the equivalent stress and the wall thickness distribution in axial low pressure forming process of bellows, the influences of three different loading paths on the forming process of bellows were analyzed to obtain the optimal marching relationship between internal pressure and axial feeding. The results show that the shape accuracy of bellows obtained by the stepped matching relationship of path 3 is high, and the maximum thinning rate is 12.1%, which verifies the feasibility of process

基金项目:
国家基金委航天联合基金重点项目(U1937205);国家自然科学基金面上项目(51475121);山东省重大科技创新工程(2019TSLH0103)
作者简介:
王彪(1997-),男,硕士研究生 E-mail:zhinan_w@163.com 通讯作者:初冠南(1979- ),男,博士,教授 E-mail:chuguannan@hit.edu.cn
参考文献:


[1]马伟, 李德雨, 钟玉平, 等. 波纹管的发展与应用
[J]. 河南科技大学学报:自然科学版, 2004, 25(4): 28-30.


Ma W,Li D Y,Zhong Y P,et al. Development and application of bellows
[J]. Journal of Henan University of Science & Technology:Natural Science, 2004, 25(4): 28-30.



[2]杨玲. 膨胀节波纹管优化设计研究
[D]. 重庆:西南农业大学, 2003.


Yang L. Optimization Design Research on Expansion Joint Bellows
[D]. Chongqing: Southwest University, 2003.



[3]肖巧. 柔性环形金属波纹管旋压-滚压联合精密成型技术研究
[D]. 秦皇岛:燕山大学, 2019.


Xiao Q. Study on Combined Spinning-rolling Precision Molding Technology for Flexible Annular Metal Bellows
[D]. Qinhuangdao: Yanshan University, 2019.



[4]Lin C, Chu G, Sun L, et al. Radial hydro-forging bending: A novel method to reduce the springback of AHSS tubular component
[J]. International Journal of Machine Tools and Manufacture, 2021, 160: 1-20.



[5]Abrantes J P, Szabo-Ponce A, Batalha G F. Experimental and numerical simulation of tube hydroforming (THF)
[J]. Journal of Materials Processing Technology, 2005, 164: 1140-1147.



[6]Yuan S, Yuan W, Wang X. Effect of wrinkling behavior on formability and thickness distribution in tube hydroforming
[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 668-671.



[7]陈杰. 管材内高压成形数值模拟与工艺研究
[D]. 上海:上海交通大学, 2013.


  Chen J. Numerical Simulation and Optimization of Tube Hydroforming
[D]. Shanghai: Shanghai Jiao Tong University, 2013.



[8]Liu J, Lyu Z, Liu Y, et al. Deformation behaviors of four-layered U-shaped metallic bellows in hydroforming
[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3479-3494.



[9]Wang G, Zhang K F, Wu D Z, et al. Superplastic forming of bellows expansion joints made of titanium alloys
[J]. Journal of Materials Processing Technology, 2006, 178(1-3): 24-28.



[10]Jiang L, He Y, Lin Y, et al. Influence of process parameters on thinning ratio and fittability of bellows hydroforming
[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1): 3371-3387.



[11]Ko M, Altan T. Prediction of forming limits and parameters in the tube hydroforming process
[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1): 123-138.



[12]Fann K J, Hsiao P Y. Optimization of loading conditions for tube hydroforming
[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 520-524.



[13]Faraji G, Mashhadi M M, Norouzifard V. Evaluation of effective parameters in metal bellowsforming process
[J]. Journal of Materials Processing Technology, 2009, 209(7): 3431-3437.



[14]Jirathearanat S, Hartl C, Altan T. Hydroforming of Y-shapes-product and process design using FEA simulation and experiments
[J]. Journal of Materials Processing Technology, 2004, 146(1):124-129.



[15]唐治东. 波纹管液压成形过程的数值模拟与实验研究
[D]. 杭州:浙江工业大学, 2015.


Tang Z D. Numerical Simulation and Experimental Study of Bellows Hydroforming
[D]. Hangzhou: Zhejiang University of Technology, 2015.



[16]杨兵, 张卫刚, 林忠钦, 等. 管件液压成形动力显式有限元仿真的虚拟加载时间分析
[J]. 中国机械工程, 2007, 18(8): 904-906.


Yang B, Zhang W G, Lin Z Q, et al. Study on the virtual loading time in simulation of tube hydroforming with dynamic explicit FEM
[J]. China Mechanical Engineering, 2007, 18(8): 904-906.



[17]Xu Y, Ma Y, Zhang S H, et al. Numerical and experimental study on large deformation of thin-walled tube through hydrofoging process
[J]. International Journal of Advanced Manufacturing Technology, 2016, 87: 1885-1890.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9