网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
摩擦系数对航空铝合金三通管充液成形后壁厚分布的影响
英文标题:Influence of friction coefficient on wall thickness distribution after hydroforming for aviation aluminum alloy tee pipe
作者:王玲 张建民 孙进 张鹏 郎利辉 
单位:沈阳飞机工业(集团)有限公司 天津天锻航空科技有限公司 北京航空航天大学 
关键词:摩擦系数 铝合金 壁厚 三通管 充液成形 
分类号:TG394
出版年,卷(期):页码:2021,46(4):101-105
摘要:

在铝合金三通管的充液成形过程中,摩擦系数是影响其壁厚分布及支管高度的关键因素之一。通过建立三通管充液成形的有限元模型,在固定的充液压力、轴向进给参数下,采用有限元分析方法对三通管在充液成形中摩擦系数对壁厚的影响进行模拟分析,获得了摩擦系数对三通管成形壁厚的影响规律,得出摩擦系数为0.075时既能保证支管较小的减薄率,又能获得较好的壁厚分布的结论。同时,通过摩擦磨损试验机获得了不同润滑介质对应的摩擦系数,最终选取了一种摩擦系数接近0.075的润滑介质进行实际胀形验证,获得了满足壁厚及减薄要求的航空铝合金三通管件,可为三通管零件的充液成形提供一些理论指导。

In the hydroforming process of aluminum alloy tee pipe, the friction coefficient is one of the key factors affecting its wall thickness distribution and branch pipe height. Therefore, by establishing the finite element model for hydroforming of tee pipe, under the fixed filling pressure and axial feeding parameters, the influence of friction coefficient on the wall thickness of tee pipe in the hydroforming process was simulated and analyzed by the finite element analysis method, and the influence law of friction coefficient on the forming wall thickness of tee pipe was obtained. The results show that when the friction coefficient is 0.075, the thinning rate of branch pipe is smaller, and the wall thickness distribution is better. At the same time, the friction coefficients corresponding to different lubricating media are obtained by the friction and wear testing machine. Finally, a lubricating media with the friction coefficient close to 0.075 is selected for actual bulging verification, and the aviation aluminum alloy tee pipe meeting the requirements of wall thickness and thinning is obtained to provide some theoretical guidance for tee pipe hydroforming.

基金项目:
作者简介:
王玲(1973-),女,学士,研究员 E-mail:w_ling2008@aliyun.com 通讯作者:张建民(1987-),男,硕士,高级工程师 E-mail:amoijianmin@163.com
参考文献:


[1]董广军. 一种铝合金三通管件内高压成形工艺的研究
[J].经济技术协作信息,2019,(16):108-109.


Dong G J. Study on the process of internal high pressure forming parameters for an aluminum alloy tee tube
[J]. Economic and Technological Cooperation Information,2019,(16):108-109.



[2]翟江波,余心宏. 三通管复合胀形主要参数的正交试验分析
[J]. 电子工艺技术,2010,32(2):106-109.


Zhai J B, Yu X H.Orthogonal experimental analysis of principal parameters in tee tube compound bulging process
[J]. Electronics Process Technology,2010,32(2):106-109.



[3]梁海成,王忠堂,袁安营,等.内压力对内高压成形三通管影响的数值分析
[J].沈阳理工学报,2007,26(5):21-25.


Liang H C,Wang Z T,Yuan A Y,et al.Numerical analysis of the influence of internal pressure on the tri-branch tube with forming using interanl high pressure
[J]. Transactions of Shenyang Ligong University,2007,26(5):21-25.



[4]余心宏,翟江波,翟妮芝. 三通管复合胀形加载路径研究
[J]. 机床与液压,2007,35(12):71-73.


Yu X H,Zhai J B,Zhai N Z. Research on loading path applied in T-tube compound bulging
[J]. Machine Tool & Hydraulics,2007,35(12):71-73.



[5]程东明,滕步刚,郭斌,等. Y型三通管内高压成形壁厚分布规律
[J]. 材料科学与工艺,2007,15(6):750-753.


Cheng D M,Teng B G,Guo B,et al.Thickness distribution of hydroforming Y-shape branch
[J]. Materials Science and Technolog,2007,15(6):750-753.



[6]苑世剑. 现代液压成形技术
[M]. 北京: 国防工业出版社, 2009.


Yuan S J. Modern Hydroforming Technology
[M].Beijing:National Defense Industry Press,2009.



[7]赵长财,周磊,张庆.薄壁管液压胀形加载路径研究
[J].中国机械工程,2003,(13):1087-1089.


Zhao C C,Zhou L,Zhang Q. Research on loading route of thin tube bulge forming
[J]. China Mechanical Engineering,2003,(13):1087-1089.



[8]邱建新,张士宏.矩形截面直角弯管内高压成形过程的数值模拟
[J].机械工程与自动化,2004,(5):1-3.


Qiu J X,Zhang S H. Numerical simulation of internal high pressure forming of the right-angle bent-tube with rectangular section
[J].Mechanical Engineering & Automation,2004,(5):1-3.



[9]田仲可,马泽恩.基于DASYLab的管材轴压胀形的加载控制
[J].机械科学与技术,2002,(3):437-438.


Tian Z K,Ma Z E. DASYLab-based tube hydroforming loading control
[J]. Mechanical Science and Technology,2002,(3):437-438.



[10]李洪洋,苑世剑,王小松,等.内高压成形工艺的应力应变及工艺失稳分析
[J].哈尔滨工业大学学报,2006,38(9):1515-1517.


Li H Y,Yuan S J,Wang X S,et al. Stress and strain state of tube hydroforming and it′s influence on destabilization
[J]. Journal of Harbin Institute of Technology,2006,38(9):1515-1517.



[11]王会凤,韩静涛,刘博纶.双金属复合三通管液压胀形技术数值模拟
[J].中国科技论文,2014, (2):137-139,144.


Wang H F,Han J T,Liu B L. Numerical simulation study on bimetal T-tube hydraulic bulging technology
[J].Sciencepaper Online,2014, (2):137-139,144.



[12]佘威,何成,张稳定,等.AA5B02铝合金三通管充液成形工艺研究及参数优化
[J].精密成形工程, 2016, 8(5):88-89.


She W,He C,Zhang W D,et al. Optimization of hydraulic forming process for three-way tube based on finite element simulation
[J]. Journal of Netshape Forming Engineering, 2016, 8(5):88-89.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9