网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
三维轴线后副车架纵梁内高压成形工艺
英文标题:Hydroforming process on three-dimensional axis side-beam of rear subframe
作者:王娜 
单位:上海宝钢高新技术零部件有限公司 
关键词:三维轴线纵梁 内高压成形 后副车架 表面质量 拉毛 
分类号:TG394
出版年,卷(期):页码:2021,46(4):121-126
摘要:

利用非线性有限元分析软件AutoForm, 对三维轴线的底盘后副车架纵梁进行弯管、预成形、内高压成形的全过程分析,根据零件非对称和不等截面的几何特征,确定零件工艺参数和加载路径,并分析预成形过程中的零件表面拉毛缺陷。同时,针对不同壁厚(4.0和4.5 mm)的纵梁管坯,通过采用相同的工装模具和不同的内高压成形工艺参数,验证了内高压成形零件型面的一致性。结果显示:壁厚为4.0和4.5 mm的纵梁分别经170和200 MPa的内压力,得到的纵梁零件型面差异最大为±0.3 mm,型面一致性较好。通过对预成形镶块进行渗氮+PVD的表面处理试验后,镶块表面硬度达到3000 HV以上,降低了摩擦系数,有效解决了零件的外观拉毛问题,改善了纵梁零件的表面质量,最终通过试验验证了采用内高压成形工艺制造三维轴线纵梁零件的可行性。

The whole process of tube bending, pre-forming and hydroforming of three-dimensional axis side-beam for rear subframe was analyzed by the nonlinear finite element analysis software AutoForm. Then, according to the geometric characteristics of part with asymmetric and unequal sections, the process parameters and loading path of part were determined, and the surface roughness defects of part during the pre-forming process were analyzed. At the same time, for the side-beam tube blanks with the wall thicknesses of 4.0 and 4.5 mm respectively, the consistency of hydroforming part profile was studied by the same tooling and die and different hydroforming process parameters. The results show that the maximum profile difference of side-beam part with the wall thicknesses of 4.0 and 4.5 mm under the internal pressures of 170 and 200 MPa respectively is ±0.3 mm, and the profile consistency is good. After the surface treatment test of nitriding and PVD on the pre-formed inserts, the surface hardness of inserts reaches more than 3000 HV, the friction coefficient reduces. The problem of rough appearance of part is solved effectively, and the surface quality of side-beam part is improved. Finally, the feasibility of using hydroforming technology to manufacture the three-dimensional axis side-beam is verified by experiments.

基金项目:
作者简介:
王娜(1979-),女,博士,工程师 E-mail:wangna@baosteel.com
参考文献:


[1]崔晓磊,韩聪,苑世剑.加载条件对内高压成形管件尺寸精度的影响
[J].材料科学与工艺,2020,28(3):150-156.


Cui X L, Han C, Yuan S J.Effect of loading conditions on dimension accuracy of hydroformed tubular parts
[J]. Materials Science and Technology,2020,28(3):150-156.



[2]苑世剑. 现代液压成形技术
[M]. 第2版. 北京:国防工业出版社,2016.


Yuan S J. Modern Hydroforming Technology
[M]. The 2nd Edition. Beijing: National Defense Industry Press, 2016.



[3]苑世剑,刘伟,王国峰,等.轻合金复杂薄壁构件流体压力成形技术新进展
[J].上海航天,2019,36(2):31-37.


Yuan S J, Liu W, Wang G F,et al. Advances in fluid pressure forming of complex light metal thin-walled components
[J]. Aerospace Shanghai, 2019,36(2):31-37.



[4]夏益新,王娜,陈新平,等.热冲压和液压成形技术在宝钢汽车轻量化服务中的应用及发展趋势
[J].精密成形工程,2017,9(6):104-110.


Xia Y X, Wang N, Chen X P, et al. Application and development trend of lightweight technology for vehicle with hot stamping and hydroforming in Baosteel
[J]. Journal of Netshape Forming Engineering, 2017,9(6):104-110.



[5]艾丽昆,曲世明. 空心双拐曲轴内高压成形加载路径优化的研究
[J].机床与液压, 2019,47(2):32-36.


Ai L K, Qu S M. Research on optimization of internal high pressure forming loading path for hollow double throw crankshaft
[J]. Machine tool & Hydraulics, 2019,47(2):32-36.



[6]陈新平,胡晓,宋晨,等.超高强钢QP980液压成形B柱仿真分析及试验研究
[J].精密成形工程,2016,8(5):60-63.


Chen X P, Hu X, Song C,et al. Simulation experiment analysis of AHSS QP980 hydroforming B pillar
[J]. Journal of Netshape Forming Engineering, 2016,8(5):60-63.



[7]宋国桥. 全自动内高压成形生产线关键影响因素
[J].锻压装备与制造技术,2020,55(5):24-26.


Song G Q. Key influencing factors of fully automatic internal high pressure forming production line
[J]. China Metalforming Equipment & Manufacturing Technology, 2020,55(5):24-26.



[8]Manabe K, Amino M. Effects of process parameters and material properties on deformation process in tube hydroforming
[J]. Journal of Materials Processing Technology, 2002, 12(3):285-291.



[9]Hartl C. Research and advances in fundamentals and industrial applications of hydroforming
[J]. Journal of Materials Processing Technology, 2005, 167(2/3):383-392.



[10]Dohmann F. Introduction to the processes of hydroforming
[J].Hydroforming of Tubes, Extrusions and Sheet Metals, 2000,(1):1-21.



[11]国宁,刘宽心,郑顺奇,等. 排气管内高压成形建模关键技术及其工艺参数研究
[J].兵器材料科学与工程,2019,42(3):77-81.


Guo N, Liu K X, Zheng S Q, et al. Key modelling techniques and process parameters for hydroforming process of exhaust pipe
[J]. Ordnance Material Science And Engineering, 2019,42(3):77-81.



[12]冯莹莹,骆宗安,张宏阁,等. T形管内高压成形过程加载路径的优化方法
[J].哈尔滨工程大学学报,2020,41(6):926-936.


Feng Y Y, Luo Z A, Zhang H G, et al. Optimization method for the loading path of a T tube in the hydroforming process
[J]. Journal of Harbin Engineering University,2020,41(6):926-936.



[13]周渝琨,黄宇,程志鹏. 副车架管梁的液压成形工艺研究
[J].机电产品开发与创新,2020, 33(5):17-19.


Zhou Y K, Huang Y, Cheng Z P. Tube hydroforming process of a sub-frame component
[J]. Development & Innovation of Machininery & Electrical Products, 2020,33(5):17-19.



[14]苏海波,邓将华. 异形截面副车架液压成形工艺研究及过程优化
[J].塑性工程学报,2019,26(5):99-104.


Su H B, Deng J H. Hydroforming study and process optimization of subframe with special section
[J]. Journal of Plasticity Engineering, 2019,26(5):99-104.



[15]刘英坤,朱峰,伍超群,等. 不同表面处理工艺下H13钢的高温耐磨性能
[J].理化检验,2012, 48(10):645-648.


Liu Y K, Zhu F, Wu C Q,et al. High temperature wear resistance of H13 steel with different surface treatments
[J]. Physical Testing and Chemical Analysis, 2012, 48(10):645-648.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9