网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
挤压工艺参数对FGH96合金棒材显微组织的影响
英文标题:Influence of extrusion process parameters on microstructure of FGH96 alloy bar
作者:王超渊 宋晓俊 冯业飞 周晓明 邹金文 
单位:北京航空材料研究院 
关键词:FGH96合金 热挤压 微观组织 挤压温度 挤压比 挤压速度 
分类号:TG376
出版年,卷(期):页码:2021,46(5):131-136
摘要:

 对FGH96合金进行了不同挤压工艺参数的热挤压变形,研究了挤压温度、挤压比、挤压速度对FGH96合金热挤压棒材的晶粒组织和γ′相的影响,以及γ′相对再结晶晶粒长大的影响。结果表明:在实验选定的挤压工艺参数范围内,FGH96合金均发生了动态再结晶,随着挤压温度的升高,再结晶晶粒尺寸增大;在FGH96合金棒材的显微组织中,大尺寸γ′相呈链状分布于晶界,小尺寸的γ′相弥散分布在晶粒内部;随着挤压温度的升高,晶界处的大尺寸γ′相逐渐溶解,晶界迁移、阻力减小,再结晶晶粒长大,挤压温度为1100 ℃时,晶界处的大尺寸γ′相开始快速溶解,再结晶晶粒开始明显长大;挤压比和挤压速度的影响主要体现在单位时间内等效应变量和变形潜热对再结晶形核和长大的双重作用上,挤压比或者挤压速度过大或过小均会出现不均匀组织。

 

 The hot extrusion deformation of FGH96 alloy was carried out under different extrusion process parameters, and the influences of extrusion temperature, extrusion ratio and extrusion speed on the grain structure, γ′ phase of hot-extruded FGH96 alloy bar and the influences of γ′ phase on recrystallization grain growth were studied. The results indicate that the dynamic recrystallization in the FGH96 alloy happens within the range of extrusion process parameters selected by the test, and the recrystallized grain size increases with the increasing of extrusion temperature. In the microstructure of FGH96 alloy bar, the large-size γ′ phase is distributed along the grain boundary in a chain shape, and small-size γ′ phase is dispersed and distributed inside the grain. With the increasing of the extrusion temperature, the large-sized γ′ phase at the grain boundary gradually dissolves, the grain boundary remove, the migration resistance decreases, and the recrystallized grains grow up. At the extrusion temperature of 1100 ℃, the large-sized γ′ phase at the grain boundary begins to dissolve rapidly, and the recrystallized grains begin to grow obviously. The influences of extrusion ratio and extrusion speed are mainly reflected in the dual effects of effective strain and deformation latent heat on the nucleation and growth of recrystallization within unit time, and excessively large or small extrusion ratio or extrusion speed cause uneven structure. 

 
基金项目:
国家重点研发计划(2019YFA0705300)
作者简介:
王超渊(1986-),男,硕士,工程师 E-mail:wchy2005@126.com
参考文献:

 [1]汪武祥,何峰,邹金文.粉末高温合金的应用与发展[J].航空工程与维修,2002,(6):26-28.


Wang W X, He F,Zou J W. The application and development of P/M superalloys[J]. Aviation Engineering & Maintenance,2002,(6):26-28.

[2]江和甫.对涡轮盘材料的需求及展望[J].燃气涡轮试验与研究,2002,15(4):1-6.

Jang H F. Requirements and forecast of turbine disk materials[J]. Gas Turbine Experiment and Research,2002,15(4):1-6.

[3]邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报,2006,26(3):244-250.

Zou J W,Wang W X. Development and application of P/M superalloy[J]. Journal of Aeronautical Materials,2006,26(3):244-250.

[4]王淑云,张敏聪,东赟鹏,等.FGH96合金热挤压棒材超塑性研究[J].材料工程,2012,(7):24-28.

Wang S Y, Zhang M C, Dong Y P, et al. Study on superplasticity of extruded FGH96 alloy[J]. Journal of Materials Engineering,2012,(7):24-28.

[5]王淑云,李惠曲,杨洪涛.粉末高温合金超塑性等温锻造技术研究[J].航空材料学报,2007,27(5):30-33.

Wang S Y,Li H Q,Yang H T. Superplastic Isothermal forging technology of P/M superalloy[J]. Journal of Aeronautical Materials,2007,27(5):30-33.

[6]Banik A,Green K A. The mechanical property response of turbine disks produced using advanced PM processing techniques[A]. Pollock T M, Kissinger R D, Bowman R R. The 9th International Symposium on Superalloys[C]. Warrendale: The Minerals,Metals & Materials Society,2000.

[7]王淑云,李惠曲,东赟鹏.大型模锻件和模锻液压机与航空锻压技术[J].锻压装备与制造技术,2009,44(5):31-34.

Wang S Y,Li H Q,Dong Y P. Development of large singlepiece forgings and heavy forging presses in aerospace forging industry[J]. China Metalforming Equipment Manufacturing Technology,2009,44(5):31-34.

[8]刘莹莹,姚泽坤,郭鸿镇.航空发动机用双性能盘的制造技术研究进展[J].材料导报,2007,21(12):95-98.

Liu Y Y,Yao Z K,Guo H Z. Research advances in manufacture technique of dual property disk applied to aircraft engine[J]. Materials Review,2007,21(12):95-98.

[9]王淑云,李惠曲,杨洪涛.粉末冶金高温合金盘件等温锻造技术[A].第十一届中国高温合金年会论文集[C]. 北京:冶金工业出版社,2007.

Wang S Y,Li H Q,Yang H T. Isothermal forging technology of P/M superalloy discs[A]. The 11th Chinese Superalloy on the High Temperature Structural Materials for Power and Energy Sources[C]. Beijing:Metallurgical Industry Press,2007.

[10]刘趁意,王淑云,李付国.粉末高温合金挤压变形组织及变形机理研究[J].锻压装备与制造技术,2009,44(1):84-87.

Liu C Y,Wang S Y,Li F G. Study on the microstructure and deformation mechanism during extrusion deformation of powder metallurgy superalloy[J]. China Metalforming Equipment & Manufacturing Technology,2009,44(1):84-87.

[11]刘小涛,丁晗晖,杨川,等. 热挤压态FGH96粉末冶金高温合金的显微组织与力学性能[J].中国有色金属学报,2016,26(2):354-364.

Liu X T,Ding H H,Yang C,et al.Microstructure and mechanical properties of hot extruded FGH96 powder metallurgy superalloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(2):354-364.

[12]Liu C Z,Liu F,Huang L,et al.Effect of hot extrusion and heat treatment on microstructure of nickelbase superalloy[J].Transactions of Nonferrous Metals Society of China,2014,(14):2544-2553.

[13]冯业飞,周晓明,邹金文,等.粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J].金属学报,2019,55(11):1437-1447.

Feng Y F, Zhou X M, Zou J W, et al. Interface reaction mechanism between SiO2 and matrix and its effect on the deformation behavior of inclusions in powder metallurgy superalloy[J]. Acta Metallurgica Sinica, 2019, 55(11): 1437-1447.

[14]方彬,纪箴,田高峰,等.FGH96高温合金中γ′相完全溶解温度的研究[J].粉末冶金技术,2013,31(2):89-95.

Fang B,Ji Z,Tian G F,et al.Investigation on complete solution temperature of γ′ in the P/M superalloy of FGH96[J]. Powder Metallurgy Technology,2013,31(2):89-95.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9