网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轨道车辆用6082-T6铝合金腐蚀疲劳性能研究
英文标题:Study on corrosion fatigue properties of 6082-T6 aluminum alloy for railway vehicles
作者:孙晓红 张仁航 郭小玉 马立勇 周扬洋 马龙 
单位:中车青岛四方机车车辆股份有限公司 河北建筑工程学院 北京航空航天大学 
关键词:6082-T6铝合金 腐蚀 疲劳 S-N曲线 断裂 
分类号:TG146.2;TG133+4
出版年,卷(期):页码:2021,46(5):228-233
摘要:

 以轨道车辆常用6082-T6铝合金为研究对象,通过3.5%NaCl溶液下的腐蚀疲劳试验,获取应力比R=0条件下横、纵向试样的应力-循环次数关系,通过最小二乘法数据处理,求得在50%置信度和50%可靠度下6082-T6铝合金板材的横、纵向腐蚀疲劳S-N曲线,并进行断口扫描,分析腐蚀疲劳断裂原因。结果表明,6082-T6铝合金板材横、纵向腐蚀疲劳极限分别为157和153 MPa,其横向性能略优于纵向性能。断口SEM微观组织分析表明,铝合金板材在腐蚀溶液的作用下产生点蚀坑,导致应力集中,继而发生疲劳裂纹扩展,在初始扩展区出现泥状花样形貌,出现二次裂纹及疲劳辉纹,直至疲劳瞬断。

 

 For 6082-T6 aluminum alloy commonly used in rail vehicles, the relationship between stress and cycle number for the transverse and longitudinal specimens under the condition of the stress ratio R=0 was obtained by the corrosion fatigue test in 3.5% NaCl solution, and the data was processed by the least square method. Then, the transverse and longitudinal corrosion fatigue S-N curves of 6082-T6 aluminum alloy sheet were obtained under the confidence of 50% and the reliability of 50%, and the fracture was observed to analyze the cause of corrosion fatigue fracture. The results show that the transverse and longitudinal corrosion fatigue limits of 6082-T6 aluminum alloy sheet are 157 and 153 MPa, respectively, and the transverse performance is slightly better than the longitudinal performance. Furthermore, the SEM microstructure analysis of fracture shows that the aluminum alloy sheet produces pitting pits under the action of corrosive solution, which leads to stress concentration, and then fatigue crack propagation. The mud-like pattern morphology, the secondary cracks and the fatigue lines appear in the initial expansion zone, until the fatigue instantaneous failure.

 
基金项目:
国家重点研发计划资助项目(2017YFB0202804);国家自然科学基金资助项目(51375500);河北省高等学校科学技术研究青年基金项目(QN2018013);张家口市科学技术研究与发展指令计划项目(1911031A);中国建设教育协会教育教学科研课题(2019101)
作者简介:
孙晓红(1988-),男,硕士,工程师 E-mail:sunxiaohong.sf@crrcgc.cc 通讯作者:马立勇(1987-),男,博士研究生,讲师 E-mail:maliyong0001@foxmail.com
参考文献:

 [1]徐振宇, 胡道春. 6082铝合金热变形过程中的动态再结晶行为[J]. 中国有色金属学报, 2020,30(6): 1230-1237.


Xu Z Y, Hu D C. Dynamic recrystallization behavior of 6082 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(6): 1230-1237.

[2]廖儒福, 林高用, 张锐,等. 6082 铝合金铸锭均匀化热处理工艺研究[J]. 有色金属加工, 2013, 42(3):35-40.

Liao R F, Lin G Y, Zhang R, et al. Research on homogenization heat treatment of 6082 aluminum alloy[J]. Nonferrous Metals Processing, 2013, 42(3):35-40.

[3]孙晓红, 杨萌, 孔德猛,等. 6082-T6铝合金板材高低温力学性能研究[J]. 电焊机, 2019, 49(2):51-54

Sun X H, Yang M, Kong D M, et al. Research on mechanical property of 6082-T6 aluminum alloy at low and elevated temperature[J]. Electric Welding Machine, 2019, 49(2):51-54.

[4]周玉龙,袁梦,周永松,等.航空航天复杂环锻件生产动态扰动因素的智能管控技术[J].锻压技术,2020,45(12):7-14.

Zhou Y L, Yuan M, Zhou Y S, et al. Intelligent management and control technology for dynamic disturbance factors in production of complex ring forgings in aerospace [J]. Forging & Stamping Technology, 2020, 45(12):7-14.

 [5]董娜, 卢明书, 张宇锋,等. 轨道车辆空调防火标准的分析及应用研究[J]. 铁道车辆, 2019, 57(9):13-16.

Dong N, Lu M S, Zhang Y F, et al. Research on analysis and application of the fireproof standard for airconditioning on rail vehicles[J]. Railway Vehicles, 2019, 57(9): 13-16.

[6]Chavoshi S Z, Luo X. Hybrid micromachining processes:A review[J]. Precision Engineering, 2015,41:1-23.

[7]Kimberli J, Hoeppner D W. Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Seience, 2006, 48(10):3109-3122.

[8]Kimberli J, Shinde S R, Clark P N, et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J]. Corrosion Seience, 2008, 50(9): 2588-2595.

[9]Menan Frederuc, Henaff Gilbert. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024[J]. International Journal of Fatigue, 2009, 31(11): 1684-1695.

[10]李新宇, 付裕, 熊峻江. 2B25 铝合金材料腐蚀疲劳性能试验研究[J]. 中国测试, 2015,41(4):32-35.

Li X Y, Fu Y, Xiong J J. Research about corrosion fatigue behavior of 2B25 aluminum alloy[J]. China Measurement & Testing, 2015,41(4):32-35.

[11]李旭东, 穆志韬, 苏维国,等. 6A02铝合金腐蚀疲劳断口分析[J]. 青岛科技大学学报:自然科学版, 2013, 34(3):285-289.

Li X D, Mu Z T, Su W G, et al. Corrosion fatigue fracture analysis of 6A02 aluminum alloy[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2013, 34(3):285-289.

[12]回丽, 周松, 许良,等. 盐水环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 航空材料学报, 2012,32(3):73-78.

Hui L, Zhou S, Xu L, et al. Influence of saline environment on fatigue property of precorroded aluminum alloy [J]. Journal of Aeronautical Materials, 2012,32(3):73-78.

[13]GB/T 20120.1—2006,金属和合金的腐蚀腐蚀疲劳试验第1部分:循环失效试验[S].

GB/T 20120.1—2006,Corrosion of metals and alloys—Corrosion fatigue test—Part 1: Cyclic failure test [S]. 

[14]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2010, Metallic materials—Tensile test—Part 1: Room temperature test method [S].

[15]GB/T 3075—2008, 金属材料疲劳试验轴向力控制方法[S].

GB/T 3075—2008, Metallic materials—Fatigue test—Axial force control method[S]. 

[16]高镇同, 蒋新桐, 雄峻江. 疲劳性能试验设计和数据处理-直升机金属材料疲劳性能可靠性手册[M]. 北京:北京航空航天大学出版社, 1999.

Gao Z T, Jiang X T, Xiong J J. Fatigue Performance Test Design and Data ProcessingHelicopter Metal Material Fatigue Performance Reliability Manual[M]. Beijing: Beihang University Press, 1999.

[17]郑清春,王乃鑫,朱培浩,等.铝合金薄板自冲铆接疲劳寿命仿真与分析[J].锻压技术, 2020,45(9):93-98.

Zheng Q C, Wang N X, Zhu P H, et al. Simulation and analysis on fatigue life of selfpiercing riveting for aluminum alloy sheet [J]. Forging & Stamping Technology, 2020,45(9):93-98.

[18]Nezhadfar P D, Johnson A S, Shamsaei N. Fatgue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature[J]. International Journal of Fatigue, 2020,136:105598.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9