[1]徐振宇, 胡道春. 6082铝合金热变形过程中的动态再结晶行为[J]. 中国有色金属学报, 2020,30(6): 1230-1237.
Xu Z Y, Hu D C. Dynamic recrystallization behavior of 6082 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(6): 1230-1237.
[2]廖儒福, 林高用, 张锐,等. 6082 铝合金铸锭均匀化热处理工艺研究[J]. 有色金属加工, 2013, 42(3):35-40.
Liao R F, Lin G Y, Zhang R, et al. Research on homogenization heat treatment of 6082 aluminum alloy[J]. Nonferrous Metals Processing, 2013, 42(3):35-40.
[3]孙晓红, 杨萌, 孔德猛,等. 6082-T6铝合金板材高低温力学性能研究[J]. 电焊机, 2019, 49(2):51-54
Sun X H, Yang M, Kong D M, et al. Research on mechanical property of 6082-T6 aluminum alloy at low and elevated temperature[J]. Electric Welding Machine, 2019, 49(2):51-54.
[4]周玉龙,袁梦,周永松,等.航空航天复杂环锻件生产动态扰动因素的智能管控技术[J].锻压技术,2020,45(12):7-14.
Zhou Y L, Yuan M, Zhou Y S, et al. Intelligent management and control technology for dynamic disturbance factors in production of complex ring forgings in aerospace [J]. Forging & Stamping Technology, 2020, 45(12):7-14.
[5]董娜, 卢明书, 张宇锋,等. 轨道车辆空调防火标准的分析及应用研究[J]. 铁道车辆, 2019, 57(9):13-16.
Dong N, Lu M S, Zhang Y F, et al. Research on analysis and application of the fireproof standard for airconditioning on rail vehicles[J]. Railway Vehicles, 2019, 57(9): 13-16.
[6]Chavoshi S Z, Luo X. Hybrid micromachining processes:A review[J]. Precision Engineering, 2015,41:1-23.
[7]Kimberli J, Hoeppner D W. Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Seience, 2006, 48(10):3109-3122.
[8]Kimberli J, Shinde S R, Clark P N, et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J]. Corrosion Seience, 2008, 50(9): 2588-2595.
[9]Menan Frederuc, Henaff Gilbert. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024[J]. International Journal of Fatigue, 2009, 31(11): 1684-1695.
[10]李新宇, 付裕, 熊峻江. 2B25 铝合金材料腐蚀疲劳性能试验研究[J]. 中国测试, 2015,41(4):32-35.
Li X Y, Fu Y, Xiong J J. Research about corrosion fatigue behavior of 2B25 aluminum alloy[J]. China Measurement & Testing, 2015,41(4):32-35.
[11]李旭东, 穆志韬, 苏维国,等. 6A02铝合金腐蚀疲劳断口分析[J]. 青岛科技大学学报:自然科学版, 2013, 34(3):285-289.
Li X D, Mu Z T, Su W G, et al. Corrosion fatigue fracture analysis of 6A02 aluminum alloy[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2013, 34(3):285-289.
[12]回丽, 周松, 许良,等. 盐水环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 航空材料学报, 2012,32(3):73-78.
Hui L, Zhou S, Xu L, et al. Influence of saline environment on fatigue property of precorroded aluminum alloy [J]. Journal of Aeronautical Materials, 2012,32(3):73-78.
[13]GB/T 20120.1—2006,金属和合金的腐蚀腐蚀疲劳试验第1部分:循环失效试验[S].
GB/T 20120.1—2006,Corrosion of metals and alloys—Corrosion fatigue test—Part 1: Cyclic failure test [S].
[14]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010, Metallic materials—Tensile test—Part 1: Room temperature test method [S].
[15]GB/T 3075—2008, 金属材料疲劳试验轴向力控制方法[S].
GB/T 3075—2008, Metallic materials—Fatigue test—Axial force control method[S].
[16]高镇同, 蒋新桐, 雄峻江. 疲劳性能试验设计和数据处理-直升机金属材料疲劳性能可靠性手册[M]. 北京:北京航空航天大学出版社, 1999.
Gao Z T, Jiang X T, Xiong J J. Fatigue Performance Test Design and Data ProcessingHelicopter Metal Material Fatigue Performance Reliability Manual[M]. Beijing: Beihang University Press, 1999.
[17]郑清春,王乃鑫,朱培浩,等.铝合金薄板自冲铆接疲劳寿命仿真与分析[J].锻压技术, 2020,45(9):93-98.
Zheng Q C, Wang N X, Zhu P H, et al. Simulation and analysis on fatigue life of selfpiercing riveting for aluminum alloy sheet [J]. Forging & Stamping Technology, 2020,45(9):93-98.
[18]Nezhadfar P D, Johnson A S, Shamsaei N. Fatgue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature[J]. International Journal of Fatigue, 2020,136:105598.
|