网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变转速混合动力液压机能效特性仿真分析及实验
英文标题:Simulation analysis and experiment of energy efficiency characteristics for variable revolving speed hybrid power hydraulic press
作者:关锋 张方东 马超 晋国 
单位:山西机电职业技术学院 辽宁工程技术大学 中国兵器工业集团淮海工业集团有限公司 
关键词:液压系统 变转速 混合动力 能效特性 动态特性 
分类号:TH137
出版年,卷(期):页码:2021,46(5):216-221
摘要:

 为了弥补液压机中传动电驱液压泵引起的节流与溢流损失,提出了一种变转速混合动力液压系统控制方式。系统配备蓄能器后可实现电液电机的能量回收,达到系统泄漏的补偿作用,以及对液压执行器发挥预压紧的功能,可以精确调控运行速率与位置。在Simulation X软件中构建了仿真模型,并从动态特性和能效特性两个方面展开分析。研究结果表明:2.5 s后两电机均发生正向旋转,从而得到总压力;2.7 s时系统压力达到9.1 MPa;介于2.7~6.0 s之间时,压力稳定变化;6.6 s时,总压力信号减小至0。该液压系统表现出了优异的运行特性,形成了平稳的速度曲线。电动机驱动过程中形成了稳定的功率变化,以液压-电气方式进行能量回收时,系统达到了最高的能量回收率,表现出最优的节能效果。开展实验测试可知,该系统可以精确定位,速度曲线运行平稳,基本无冲击,整个系统运行特性良好。

 

 In order to compensate for the loss of throttling and overflow caused by the transmission electric drive hydraulic pump of hydraulic press, a control method of variable revolving speed hybrid hydraulic system was proposed. Then, after the system was equipped with an accumulator, it realized the energy recovery of electro-hydraulic motor, achieved the compensation effect of system leakage and the pre-compression function of hydraulic actuator, and accurately controlled the operating speed and position. Furthermore, the simulation model was built by software Simulation X, and the analysis was carried out from two aspects of dynamic characteristics and energy efficiency characteristics. The results show that after 2.5 s, the two motors both rotate in a positive direction to get the total pressure, and the system pressure reaches 9.1 MPa at 2.7 s. However, the pressure changes stably between 2.7-6.0 s, and the total pressure signal decreases to zero at 6.6 s. Therefore, the system shows excellent operating characteristics and forms a smooth velocity curve, and the steady power change is formed during the driving process of electric motor. When the energy recovery is carried out in a hydraulic-electric way, the system achieves the highest energy recovery rate and shows the best energy-saving effect. The experimental test shows that the system can accurately locate, the speed curve runs smoothly, there is basically no impact, and the entire system has good operating characteristics.

 
基金项目:
山西省高等学校科技创新项目(2019L1000)
作者简介:
关锋(1980-),男,硕士,讲师 E-mail:zetuojinai@126.com
参考文献:

 [1]汪飞雪, 姚静, 胡福泰, 等. 锻造液压机振动特性机-液联合仿真[J]. 中国机械工程, 2020, 31(10): 1175-1182.


Wang F X, Yao J, Hu F T, et al. Mechanicalhydraulic cosimulation of vibration characteristics of forging hydraulic press [J]. China Mechanical Engineering, 2020, 31(10): 1175-1182.

[2]贾超, 周俊强. 基于AMESimMATLAB/Simulink的液压机新型控制器设计及联合仿真[J].锻压技术, 2019, 44(11): 146-151.

Jia C, Zhou J Q. Design and cosimulation of new controller for hydraulic press based on AMESimMATLAB/Simulink [J]. Forging & Stamping Technology, 2019, 44(11): 146-151.

[3]董致新, 黄伟男, 葛磊, 等. 泵阀复合进出口独立控制液压挖掘机特性研究[J]. 机械工程学报, 2016, 52(12): 173-180.

Dong Z X, Huang W N, Ge L, et al. Research on the characteristics of pumpvalve combined inlet and exit independent control hydraulic excavator [J]. Journal of Mechanical Engineering, 2016, 52(12): 173-180.

[4]Ketelsen S, Padovani D, Andersen T, et al. Classification and review of pumpcontrolled differential cylinder drives[J]. Energies, 2019, 12(7): 1-27.

[5]Hippalgaonkar R, Ivantysynova M. Optimal power management of hydraulic hybrid mobile machines Part I: Theoretical studies, modeling and simulation[J]. Journal of Dynamic Systems Measurement & Control, 2016, 138(5): 1-12.

[6]He X, Xiao G, Hu B, et al. The applications of energy regeneration and conversion technologies based on hydraulic transmission systems: A review[J]. Energy Conversion and Management, 2020, 205: 1-21.

[7]Xia L, Quan L, Zhang X, et al. Operating characteristics and energy efficiency of hydraulicgas combined driving hydraulic excavator boom[J]. Journal of Mechanical Engineering, 2017, 53(20): 176-183.

[8]Leifeld R, Vukovic M, Murrenhoff H. Hydraulic hybrid architecture for excavators[J]. Atzoffhighway Worldwide, 2016, 9(3): 44-49.

[9]Meinert M, Prenleloup P, Schmid S, et al. Energy storage technologies and hybrid architectures for specific dieseldriven rail duty cycles: Design and system integration aspects [J]. Applied Energy, 2015, 157: 619-629.

[10]郭玉玺, 张利. 大型模锻液压机的混合动力驱动系统[J].锻压技术, 2020, 45(10): 124-129.

Guo Y X, Zhang L. Hybrid drive system of largescale die forging hydraulic press [J]. Forging & Stamping Technology, 2020, 45(10): 124-129.

[11]Casoli P, Gambarotta A, Pompini N, et al. Hybridization methodology based on DP algorithm for hydraulic mobile machineryApplication to a middle size excavator[J]. Automation in Construction, 2016, 61: 42-57.

[12]Ge L, Quan L, Zhang X, et al. Efficiency improvement and evaluation of electric hydraulic excavator with speed and displacement variable pump[J]. Energy Conversion and Management, 2017, 150: 62-71.

[13]Xia L, Quan L, Ge L, et al. Energy efficiency analysis of integrated drive and energy recuperation system for hydraulic excavator boom[J]. Energy Conversion & Management, 2018, 156: 680-687.

[14]Lin T, Chen Q, Ren H, et al. Review of boom potential energy regeneration technology for hydraulic construction machinery[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 358-371.

[15]关澈, 程珩, 权龙, 等. 纯电驱液压挖掘机电气式动臂势能回收再利用系统研究[J]. 液压与气动, 2020,(1): 21-26.

Guan C, Cheng H, Quan L, et al. Research on electric boom potential energy recycling system of pure electric drive hydraulic excavator [J].Chinese Hydraulics & Pneumatics, 2020,(1): 21-26.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9