[1]Lee B H, Reddy N S, Yeom J T. Flow softening behavior during high temperature deformation of AZ31Mg alloy[J]. J. Mater. Process Techol.,2007,187-188:766-769.
[2]Lin Y C, Chen M S, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression[J]. Materials Science and Engineering AStructural Materials Properties Microstructure and Processing, 2009, 499(1): 88-92.
[3]Quan G, Tong Y, Luo G, et al. A characterization for the flow behavior of 42CrMo steel[J]. Computational Materials Science, 2010, 50(1): 167-171.
[4]Lin Y C, Chen M,Zhong J. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel[J]. Journal of Materials Processing Technology, 2008, 205(1): 308-315.
[5]Zhan M Y, Chen Z, Zhang H, et al. Flow stress behavior of porous FVS0812 aluminum alloy during hotcompression[J]. Mechanics Research Communications, 2006, 33(4): 508-514.
[6]Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of nearα titanium alloys[J]. Materials Science and Engineering AStructural Materials Properties Microstructure and Processing, 2007, 447(1): 99-110.
[7]蔺永诚, 陈明松,钟掘,等. 42CrMo钢形变奥氏体的静态再结晶[J].中南大学学报,2009,40(2):413-416.
Lin Y C, Chen M S, Zhong J, et al. Static recrystallization behaviors of deformed 42CrMo steel[J]. Journal of Central South University, 2009, 40(2):413-416.
[8]付甲, 李永堂,付建华,等.铸态42CrMo钢热压缩变形时动态再结晶行为[J].机械工程材料,2012,36(2):91-95.
Fu J, Li Y T, Fu J H, et al. Dynamic recrystallization behavior of ascast 42CrMo steel during hot compression deformation[J]. Material for Mechanical Engineering,2012, 36(2):91-95.
[9]潘品李, 钟约先,马庆贤,等. 316LN钢多道次变形条件下的动态再结晶行为[J].塑性工程学报,2011,18(5):13-18.
Pan P L, Zhong Y X, Ma Q X, et al. Research on the dynamic recrystallization behavior of 316LN steel under multipass deformation[J].Journal of Plasticity Engineering, 2011,18(5):13-18.
[10]藏金鑫, 陶乐晓,冯朝辉,等. 热变形参数对新型AlZnMgCu高强铝合金微观组织的影响[J].塑性工程学报,2011,18(5):38-42.
Zang J X, Tao L X, Feng C H, et al. Influence of the deformation parameters on microstructures of a new AIZnMgCu high strength aluminum alloy[J].Journal of Plasticity Engineering, 2011,18(5):38-42.
[11]张小立, 庄传晶,吉玲康,等.高钢级管线钢的有效晶粒尺寸[J].机械工程材料,2007,31(3):4-8.
Zhang X L, Zhuang C J, Ji L K, et al. Effective particle size of high grade pipeline steels[J]. Material for Mechanical Engineering, 2007, 31(3):4-8.
[12]易幼平, 杨积慧,蔺永诚.7050铝合金热压缩变形的流变应力木构方程[J].材料工程,2007, (4): 20-26.
Yi Y P, Yang J H, Lin Y C. Flow stress constitutive equation of 7050 aluminum alloy during hot compression[J]. Journal of Materials Engineering, 2007, (4): 20-26.
[13]文智, 易丹青,王斌,等.Al-6Mg-0.4Mn-0.2S铝合金的高温变形行为及热加工图[J].中南大学学报:自然科学版,2013, 44(3): 914-920.
Wen Z, Yi D Q, Wang B, et al. Hot deformation and processing maps of Al-6Mg-0.4Mn-0.2S aluminum alloy[J]. Journal of Central South University: Science and Technology, 2013, 44(3): 914-920.
[14]李红英, 赵菲,刘丹,等. 工程机械用Q1100钢的热变形应变补偿本构模型[J].中南大学学报:自然科学版,2020,51(3):608-618.
Li H Y, Zhao F, Liu D, at al, Thermal deformation strain compensation constitutive equation for Q1100 steel for construction machinery[J]. Journal of Central South University: Science and Technology, 2020,51(3):608-618.
[15]吴道祥, 梁强,王敬.2024A铝合金高温流变行为及本构关系研究[J].特种铸造及有色合金,2020,40(3):233-238.
Wu D X, Liang Q, Wang J. Hot deformation behavior and constitutive equation of 2024A aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2020, 40(3):233-238.
[16]秦芳诚. 环件铸辗复合成形中Q235B钢热变形及组织演变研究[D].太原:太原科技大学,2014.
Qin F C. Study on Thermal Deformation and Microstructure Evolution of Q235 Steel in the CastingRolling Compound Forming of Ring[D]. Taiyuan: Taiyuan University of Science and Technology, 2014.
[17]朱洪军. 高强韧Ti64246合金热变形行为及应变补偿型本构模型[J].金属热处理,2016,41(8):184-188.
Zhu H J. Hot deformation behavior and strain compensation constitutive model of high strength and high toughness Ti64246 alloy[J]. Heat Treatment of Metals, 2016, 41(8):184-188.
|