?[1]陈嘉会. 热挤压铝黄铜显微组织研究[D]. 宁波:宁波大学,2014.
Chen J H. Microstructure and Mechanical Properties Analysis of Aluminum Brass Produced By Hotworking [D]. Ningbo: Ningbo University, 2014.
[2]张全叶, 罗勇,邝山,等. 变质剂对多元复杂耐磨黄铜组织性能的影响[J].甘肃冶金, 2009,31(3):1-3.
Zhang Q Y, Luo Y, Kuang S, et al. Effects of alterative on microstructures of multi element complicated antifriction brass [J]. Gansu Metallurgy, 2009, 31(3):1-3.
[3]陈一胜, 傅政,朱志云,等.高强耐磨黄铜的研究现状[J].有色金属科学与工程,2012,3(5):23-29.
Chen Y S, Fu Z, Zhu Z Y, et al. Research status of high strength and antiattrition brass [J]. Nonferrous Metals Science and Engineering, 2012, 3(5):23-29.
[4]靳一鸣, 胡涛涛, 满续存,等. 高力黄铜中合金元素分布特征及其对摩擦性能的影响[J]. 特种铸造及有色合金, 2019, 39(2):115-119.
Jin Y M, Hu T T, Man X C, et al. Distribution characteristic of Mn elements in highforce brass and its effects on tribological properties[J]. Special Casting & Nonferrous Alloys, 2019, 39(2):115-119.
[5]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21:541-548.
[6]Zerilli F J, Armstrong R W. Dislocationmechanics based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5):1816-1825.
[7]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working [J]. Materials & Design, 2011, 32(4):1733-1759.
[8]Samantaray D, Mandal S, Bhaduri A K. A comparative study on JohnsonCook, modified ZerilliArmstrong and Arrhenius type constitutive model to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel[J]. Computational Materials Science, 2009, 47(2):568-576.
[9]Roebuck B, Lord J D, Brooks M, et al. Measurement of flow stress in hot axisymmetric compression tests[J]. Materials at High Temperatures, 2006, 23(2):59-83.
[10]Gholamzadeh A, Taheri A K. The prediction of hot flow behavior of Al-6%Mg alloy [J]. Mechanics Research Communications, 2009, 36(2):252-259.
[11]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates [J]. Metallurgical Transactions A, 1991, 22(7):1545-1558.
[12]Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stressstrain behavior of alloy 304L [J]. Metallurgical & Materials Transactions A, 1994, 25(12):2737-2752.
[13]王文建. 基于多材质电极的复杂曲面电火花成形加工方法研究[D]. 大连:大连交通大学,2018.
Wang W J. Study on EDM Forming Method of Complex Surface Based on Multimaterial Electrodes [D]. Dalian: Dalian Jiaotong University, 2018.
[14]马斌, 李平, 梁强, 等. 同步器齿环用HNi55-7-4-2合金高温本构模型构建及应用[J]. 材料热处理学报, 2020, 41(12):146-155.
Ma B, Li P, Liang Q, et al. Construction and application of hightemperature constitutive model of HNi55-7-4-2 alloy for synchronizer gear ring [J]. Transactions of Materials and Heat Treatment, 2020, 41(12):146-155.
[15]Wang M H, Wei K, Li X J, et al. Constitutive modeling for high temperature flow behavior of a highstrength manganese brass[J]. Journal of Central South University, 2018, 25(7):1560-1572.
[16]丁蓉蓉, 周杰, 李鑫,等. Ti5Al5Mo5V1Cr1Fe钛合金的高温流变行为与热加工图研究[J]. 锻压技术,2019, 44(3): 133-139.
Ding R R, Zhou J, Li X, et al. Research on high temperature rheological behavior and hot processing map for Ti5Al5Mo5V1Cr1Fe titanium alloy [J]. Forging & Stamping Technology, 2019, 44(3): 133-139.
[17]王敬, 梁强, 李永亮. 5A06铝合金的高温变形行为分析及本构模型研究[J]. 锻压技术,2020, 45(8):204-211.
Wang J, Liang Q, Li Y L. Hot deformation behavior analysis and constitutive model study of 5A06 aluminum alloy [J]. Forging & Stamping Technology, 2020, 45(8):204-211.
|