网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC6钛合金叶片精锻工艺及模具变形补偿设计
英文标题:Precision forging process and design on mold deformation compensation for TC6 titanium alloy blade
作者:王鹏1 龚小涛2 吕学春1 
单位:1.中国航发西安航空发动机有限公司 2.西安航空职业技术学院 通用航空学院 
关键词:TC6钛合金 精锻工艺 有限元分析 逆向补偿 热处理 
分类号:TG314
出版年,卷(期):页码:2021,46(6):48-53
摘要:

 为解决TC6钛合金精锻叶片的变形问题,利用有限元分析方法并结合实际生产,对精锻工艺、模具补偿及热处理工艺进行了优化。在分析TC6钛合金的高温压缩应变行为的基础上,给出了具体的精锻工艺参数及热处理工艺参数;分析了精锻成形过程中变形残余应力对TC6钛合金叶片变形的影响规律及模具变形规律,采用终锻模具逆向补偿设计和改进热处理装炉方式两种手段来减小精锻叶片的变形。研究结果表明:改进工艺后,某机34级精锻转子叶片不同截面的扭转值较改进前下降了53%~84%,年均废品损失降低了5 万元以上,将该工艺推广至其他精锻叶片生产中可取得可观的经济效益。

 To solve the deformation problem of precision forging blade for TC6 titanium alloy, the precision forging process, mold compensation and heat treatment process were optimized by finite-element analysis method combined with actual production. Then, based on the analysis of the high temperature compressive strain behavior for TC6 titanium alloy, the precise forging process parameters and the heat treatment process parameters were given. Furthermore, the influence laws of residual stress on the deformation of TC6 titanium alloy blade and the deformation laws of mold in the precision forging process were analyzed, and the deformation of final forging blade was reduced by the reverse compensation design of final forging mold and the improvement of heat treatment furnace. The results show that after the process is improved, the torsion values of different sections for the  precision forging rotor blades of three and four stages of a certain engine are reduced by 53%-84% compared with those before the improvement, and the average annual waste loss is reduced by more than 50000 yuan. Thus, this process can be extended to other precision forging rotor blades production to obtain considerable economic benefits.

基金项目:
陕西省科学研究项目计划(16JK1401);西安航空职业技术学院科研计划项目(19XHZK-004)
作者简介:
王鹏(1984-),男,硕士,工程师 E-mail:435534560@qq.com
参考文献:

 [1]李淼泉, 薛善坤, 陈胜晖, . 钛合金叶片等温精锻时晶粒尺寸的数值模拟[J]. 机械科学与技术, 2004, 23(11)1380-1382.


 


Li M Q, Xue S K, Chen S H, et al. Finite element (FE) simulation of grain size during isothermal forging of airfoil blade [J]. Mechanical Science and Technology for Aerospace Engineering, 2004, 23(11):1380-1382.


 


[2]周晓虎, 刘卫,郝芳,等. β锻造工艺对TC21钛合金大型锻件组织及性能的影响 [J]. 锻压技术,2020,45(6):29-35.


 


Zhou X HLiu WHao Fet al. Influence of quasiβ forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forging & Stamping Technology2020,45(6):29-35.


 


[3]汪大成, 吴菊香, 丁维. 钛合金双安装板静子叶片精锻成形工艺优化[J]. 材料科学与工艺, 2013, 21(4):131-137.


 


Wang D C, Wu J X, Ding W. Optimization on precision forging process of doublemounting plates stator blade of titanium alloy [J]. Materials Science & Technology, 2013, 21(4):131-137.


 


[4]谢强, 廖强, 王兴, .径向锻造方式对TC6钛合金棒材组织和拉伸性能的影响[J]. 热加工工艺, 2019, 48(7):162-167.


 


Xie Q, Liao Q, Wang X, et al. Effects of radial forging mode on microstructure and tensile properties of TC6 titanium alloy bars [J]. Hot Working Technology, 2019, 48(7):162-167.


 


[5]胡学超, 吕彦明, 李彦奎, . 基于变形分析的叶片精锻模具补偿方法[J]. 锻压技术, 2019, 44(3):94-132.


 


Hu X C, Lyu Y M, Li Y K, et al. Precompensation method of blade precision forging die based on deformation analysis [J]. Forging & Stamping Technology, 2019, 44(3):94-132.


 


[6]丁蓉蓉, 周杰,李鑫,等. Ti-5Al-5Mo-5V-1Cr-1Fe钛合金的高温流变行为与热加工图研究 [J].锻压技术,2019,44(3):133-139.


 


Ding R RZhou JLi Xet al. Research on high temperature rheological behavior and hot processing map for Ti5Al5Mo5V1Cr1Fe titanium alloy [J].Forging & Stamping Technology2019, 44(3):133-139.


[7]洪凌翔, 孟庆通. TC11钛合金筒类精锻件成形工艺 [J]. 锻压技术,2019,44(9):7-11.


 


Hong L XMeng Q T. Precision forging process of TC11 titanium alloy cylinder [J]. Forging & Stamping Technology2019,44(9):7-11.


 


[8]杨舜, 李宏, 刘印刚, . 叶片精密锻造过程数值模拟技术研究进展[J]. 精密成形工程, 2015, 7(6):44-51.


 


Yang S, Li H, Liu Y G, et al. A review on the numerical simulation technology of aerofoil blade precision forging process [J]. Journal of Netshape Forming Engineering, 2015, 7(6):44-51.


 


[9]高涛, 杨合, 刘郁丽. 面向钛合金叶片精锻变形均匀预成形设计的三维有限元反向模拟[J]. 稀有金属材料与工程, 2012, 41(4):640-644.


 


Gao T, Yang H, Liu Y L. Implementation of 3D backward simulation for preform design with uniform deformation in netshape forging of blade of titanium alloy [J]. Rare Metal Materials and Engineering, 2012, 41(4):640-644.


 


[10]吴捍疆, 张丰收, 燕根鹏. 基于数值模拟的TC4钛合金航空叶片精锻过程的金属流动规律[J]. 锻压技术, 2020, 45(2):7-14.


 


Wu H J, Zhang F S, Yan G P. Flow law of metal in precision forging for TC4 titanium alloy aeronautical blade on numerical simulation [J]. Forging & Stamping Technology, 2020, 45(2):7-14.


 


[11]何万涛, 邵光保,郭延艳,等. 基于全息锥光的钛合金精锻叶片精密测量规划方法 [J].锻压技术,2019,44(12):139-145.


 


He W TShao G BGuo Y Yet al. Accuracy measurement planning method for titanium alloy precision forging blade based on holographic cone light [J].Forging & Stamping Technology2019,44(12):139-145.


 


[12]梅益, 刘洪波,罗宁康,等. 基于GAELM的钛合金叶片精锻成形过程的模具磨损分析与预测 [J]. 锻压技术,2020,45(10):130-136.


 


Mei YLiu H BLuo N Ket al. Mold wear analysis and prediction on fine forging process for titanium alloy blade based on GAELM [J]. Forging & Stamping Technology2020,45(10):130-136.


 


[13]吴捍疆, 张丰收, 燕根鹏. 工艺参数对TC4合金航空发动机叶片精锻残余应力的影响[J]. 锻压技术, 2020, 45(1):9-14.


 


Wu H J, Zhang F S, Yan G P. Influence of process parameters on residual stress for TC4 alloy aeroengine blade in precision forging [J]. Forging & Stamping Technology, 2020, 45(1):9-14.


 


[14]吴捍疆, 张丰收, 燕根鹏. 航空发动机叶片精锻残余应力数学模型对比分析[J]. 塑性工程学报, 2020, 27(6):135-140.


 


Wu H J, Zhang F S, Yan G P. Comparative analysis of mathematical models of residual stress in precision forging of aero engine blades [J]. Journal of Plasticity Engineering, 2020, 27(6):135-140.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9