网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Simulink的建筑孔板液压成形机双蓄能器 泵控冲压系统仿真分析
英文标题:Simulation analysis on double accumulators pump-controlled stamping system in hydroforming machine for building orifice plate based on Simulink
作者:闫小春1 李立青2 张强3 
单位:1. 河南建筑职业技术学院 土木工程系 2. 天津大学 建筑工程学院 3. 河南飞工重型机械制造有限公司 
关键词:建筑孔板液压成形机 蓄能器 泵控 液压系统 能量回收 
分类号:TH132
出版年,卷(期):页码:2021,46(6):155-159
摘要:

 为了提高建筑孔板液压成形机冲压系统的运行稳定性,通过引入双蓄能器的方式提出了一种泵控冲压系统,通过协同方式来实现泵控过程,并在Simulink平台开展了仿真分析。研究结果表明:在双蓄能器模式下制动时,被动马达出油口获得了较高的压力,优化了制动性能,实际制动时间比单蓄能器模式缩短了0.3 s。高压蓄能器压力提高至31 MPa时,低压蓄能器的液压油口被开启,高、低压蓄能器均进入能量回收过程,直至制动过程结束。通过低压蓄能器弥补高压蓄能器体积不足的方式实现了压力的快速调节,以确保单蓄能器在高压下也能够满足能量高效回收的需求。本系统的液压系统表现出了很好的高效节能性能,对提高建筑孔板液压成形机液压系统的运行效率具有一定的理论意义。

 In order to improve the operation stability of stamping system in hydroforming machine for building orifice plate, a pump-controlled stamping system was proposed by introducing the method of double accumulators. Then, the pump-controlled process was realized by means of collaboration, and the simulation analysis was carried out by Simulink platform. The results show that when baking in the double accumulators mode, the oil outlet of passive motor obtains a higher pressure to optimize the braking performance, and the actual braking time is shortened by 0.3 s compared with that of the single accumulator mode. When the pressure of high pressure accumulator increases to 31 MPa, the hydraulic oil outlet of low pressure accumulator is opened, and both the high and low pressure accumulators enter the energy recovery process until the end of braking process. In addition, the low pressure accumulator compensates for the insufficient volume of high pressure accumulator to achieve rapid pressure regulation, which ensures that the single accumulator can also meet the needs of high efficient energy recovery under high pressure. Thus, the hydraulic system of this system shows good high efficiency and energy saving performance, which has certain theoretical significance for improving the operating efficiency of hydraulic system in hydroforming machine for building orifice plate.

 

基金项目:
河南省科技攻关项目(72102310464,172102310367)
作者简介:
闫小春(1972-),女,学士,讲师 E-mail:yxc0557@126.com
参考文献:

 [1]何谦, 陈毛毛, 郁祉杰, . 高精度热压成型机液压伺服系统的设计与控制[J]. 液压与气动, 2020,(11): 93-98.


 


He Q, Chen M M, Yu Z J, et al. Design and control of hydraulic servo system for high precision hot press forming machine [J]. Chinese Hydraulics & Pneumatics, 2020,(11): 93-98.


 


[2]郝和平, 郭春梅, 王小燕, . 四柱液压机自动化监测和控制改造[J]. 机床与液压, 2019, 47(16): 111-113.


 


Hao H P, Guo C M, Wang X Y, et al. Reform on automatic monitoring and control of fourcolumn hydraulic press[J]. Machine Tool & Hydraulics, 2019, 47(16): 111-113.


 


[3]张祯奇, 段君艳. 热挤压成型液压机的电液控制系统与工艺成型方法[J]. 机械设计, 2019, 36(S1): 371-373.


 


Zhang Z Q, Duan J Y. Electrohydraulic control system and process forming method of hot extrusion hydraulic press [J]. Journal of Mechanical Design, 2019, 36(S1): 371-373.


 


[4]邵璇, 张永德, 孙桂涛, . 液压机器人关节力补偿控制研究[J]. 电机与控制学报, 2018, 22(9): 98-103.


 


Shao X, Zhang Y D, Sun G T, et al. Research on joint force compensation control of hydraulic robot [J]. Electric Machines & Control, 2018, 22(9): 98-103.


 


[5]Huang W N, Quan L, Huang J H, et al. Excavator swing system controlled with separate meterin and meterout method[J]. Journal of Mechanical Engineering, 2016, 52(20): 159-167.


 


[6]王庆阳, 高梦迪, 李磊, . 冲压成形节能优化方法[J].锻压技术, 2019, 44(6): 134-144.


 


Wang Q Y, Gao M D, Li L, et al. Energysaving optimization method of stamping[J]. Forging & Stamping Technology, 2019, 44(6): 134-144.


 


[7]张翔, 皇甫兆阳, 孙庆东, . 基于Fastamp和正交试验的汽车门框冲压工艺参数优化[J].锻压技术, 2021, 46(1): 70-75.


 


Zhang X, Huangfu Z Y, Sun Q D, et al. Optimization of stamping process parameters of automobile door frame based on fastamp and orthogonal test[J].Forging & Stamping Technology, 2021, 46(1): 70-75.


 


[8]高双明, 矫阿娇, 崔礼春. 某轿车后门内板冲压工艺及整形模具结构优化[J]. 锻压技术, 2021, 46(1): 65-69.


 


Gao S M, Jiao A J, Cui L C. Stamping process and structure optimization of shaping die for rear door inner plate of a car [J]. Forging & Stamping Technology, 2021, 46(1): 65-69.


 


[9]董致新, 黄伟男, 葛磊, . 泵阀复合进出口独立控制液压挖掘机特性研究[J]. 机械工程学报, 2016, 52(12): 173-180.


 


Dong Z X, Huang W N, Ge L, et al. Research on the characteristics of pumpvalve combined inlet and exit independent control hydraulic excavator [J]. Journal of Mechanical Engineering, 2016, 52(12): 173-180.


 


[10]刘华, 汪成文, 赵斌. 基于泵阀协调控制的电液位置伺服节能控制研究[J]. 机电工程, 2020, 37(9): 1039-1044.


 


Liu H, Wang C W, Zhao B. Energy saving control of electrohydraulic position servo based on pump valve coordinated control[J]. Mechanical & Electrical Engineering Magazine, 2020, 37(9): 1039-1044.


 


[11]Ren H, Lin T, Huang W, et al. Characteristics of the energy regeneration and reutilization system during the acceleration stage of the swing process of a hydraulic excavator[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2017, 231(6): 842-856.


 


[12]朱石沙, 章岱, 黄鹏程, . 双回路蓄能器充液阀的设计与研究[J]. 流体机械, 2018, 46(10): 46-50.


 


Zhu S S, Zhang D, Huang P C, et al. Design and research of double-circuit accumulator filling valve[J]. Fluid Machinery, 2018, 46(10): 46-50.


 


[13]Minav T, Hnninen H, Sinkkonen A, et al. Electric or hydraulic energy recovery systems in a reach TruckA comparison[J]. Strojniski Vestnik, 2014, 60(4): 232-240.


 


[14]许高伦, 宁晓斌, 王宇坤, . 双蓄能器液压再生制动系统制动特性研究[J]. 机电工程, 2018, 35(10): 1048-1052.


 


Xu G L, Ning X B, Wang Y K, et al. Research on braking characteristics of double accumulator hydraulic regenerative braking system [J]. Journal of Mechanical & Electrical Engineering, 2018, 35(10): 1048-1052.


 


[15]刘改叶, 张习. 单双蓄能器供油的提升机恒减速闸控系统动态特性对比[J]. 中国矿业, 2021, 30(1): 95-99.


 


Liu G Y, Zhang X. Comparison of dynamic characteristics of hoist constant reducer control system with single and double accumulators [J]. China Mining, 2021, 30(1): 95-99.


 


[16]张丹丹, 张学炜, 张伟. 双蓄能器并联式液压混合动力车制动特性研究[J]. 液压与气动, 2015,(2): 74-78.


 


Zhang D D, Zhang X W, Zhang W. Double accumulator for parallel hydraulic hybrid vehicle braking characteristics[J]. Chinese Hydraulics & Pneumatics, 2015,(2): 74-78.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9