网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金大型薄壁异型曲面旋压件的淬火变形规律
英文标题:Quenching deformation laws of large thin-walled special-shaped spinning parts with curved surface for aluminum alloy
作者:崔笑蕾1 詹梅1 樊晓光1 李志欣1 马飞2 王隽文3 
单位:1.西北工业大学 材料科学与工程学院 2.中国航天科技集团公司 长征机械厂 
关键词:铝合金 薄壁件 旋压 有限元分析 淬火变形规律 
分类号:TG156.34
出版年,卷(期):页码:2021,46(6):203-211
摘要:

 为了提高铝合金薄壁件的制造精度,对铝合金大型薄壁异型曲面旋压件的淬火变形规律进行了研究。基于ABAQUS软件平台建立了构件淬火过程有限元模型,获得了其淬火变形特征,以及固溶温度、淬火介质温度、淬火浸液方向和浸液速度对构件淬火变形的影响。结果表明:淬火后,构件将发生整体收缩或膨胀变形,且大端面呈周期性的波浪形翘曲特征;降低淬火固溶温度和提高淬火浸液速度可以显著减小构件的淬火变形;淬火介质温度将改变构件的淬火变形方式和最大变形位置,最后,确定了较小淬火变形下适合于封头构件的淬火介质温度为40 ℃;相比开口向上的淬火浸液方向,当采用开口向下的淬火浸液方向进行淬火时,封头构件大端面的淬火变形程度明显减小。

 In order to improve the manufacturing precision of aluminum alloy thin-walled parts, the quenching deformation laws of large thin-wall special-shaped spinning parts with curved surface for aluminum alloy were studied. Based on the ABAQUS software platform, a finite element model of the quenching process was established, and the quenching deformation characteristics were obtained, as well as the effects of solution temperature, quenchant temperature, immersion direction and immersion speed of quenching on the quenching deformation for components. The results show that the component will shrink or expand as a whole after quenching, and the big end surface presents the periodic wave-shape warping characteristics. The quenching deformation of components can be significantly reduced by decreasing the solid solution temperature and increasing the immersion speed of quenching. The quenching deformation mode and the maximum deformation position of components are changed by the quenchant temperature. Finally, the quenchant temperature suitable for head component with smaller quenching deformation is 40 ℃. Compared with the immersion direction of quenching with opening upward, the quenching deformation of the big end surface for head component obviously decreases when the quenching immersed direction of opening downward is applied.

基金项目:
国家杰出青年科学基金资助项目(51625505);航天先进制造技术研究联合基金项目(U1537203)
作者简介:
作者简介:崔笑蕾(1983-),女,博士研究生 E-mail:cuixiaolei@mail.nwpu.edu.cn 通信作者:詹梅(1972-),女,博士,教授 E-mail:zhanmei@nwpu.edu.cn
参考文献:

 [1]徐文臣,矫健,陈宇,等. 立式四对轮新型旋压机结构设计及优化分析 [J].锻压技术,2019 ,44(1):102-112.


 


Xu W CJiao JChen Yet al. Analysis on design and optimization of a new vertical counter-roller spinning machine with four pairs of rollers [J]. Forging & Stamping Technology2019 , 44(1):102-112.


 


[2]詹梅, 李志欣, 高鹏飞, . 铝合金大型薄壁异型曲面封头旋压成形研究进[J]. 机械工程学报, 2018, 54(9): 86-96.


 


Zhan M, Li Z X, Gao P F, et al. Advances in spinning of aluminum alloy large-sized thin-walled and special-curved surface head [J]. Journal of Mechanical Engineering, 2018, 54(9): 86-96.


 


[3]Li Z X, Zhan M, Fan X G, et al. Multi-mode distortion behavior of aluminum alloy thin sheets in immersion quenching[J]. Journal of Materials Processing Technology, 2019, 279: 116576.


 


[4]Zhou X. Effect comparison of dip quenching and spray quenching heat treatment of heavy forgings used for nuclear power[J]. Heavy Castings & Forgings, 2016, 52(6): 35-37.


 


[5]卢琛, 张程菘, 富宏亚, . ZL205A 铝合金大型薄壁件淬火过程模拟与变形控制[J]. 热处理技术与装备, 2016, 37(1): 81-85.


 


Lu C, Zhang C S, Fu H Y, et al. Simulation of quenching process and control of distortion about large thin-wall workpiece of ZL205A aluminum alloy[J]. Heat Treatment Technology Equipment, 2016, 37(1): 81-85.


 


[6]刘勇, 耿会程, 朱彬, . 高强铝合金高效热冲压工艺研究进展[J]. 锻压技术, 2020, 45(7): 1-12.


 


Liu Y, Di H C, Zhu B, et al. Research progress on high efficiency hot stamping process for high strength aluminum alloy [J]. Forging & Stamping Technology, 2020, 45(7): 1-12.


 


[7]王树松. 30Cr3钢形变热处理工艺研究[J]. 新技术新工艺, 2006, (3): 64-66.


 


Wang S S. 30Cr3 steel rocket engine shell ausforming[J]. New Technology & New Process, 2006, (3): 64-66.


 


[8]梁旭坤, 陈磊, 胡永会. 厚板非对称淬火变形的仿真研究[J]. 热加工工艺, 2013, 42(20): 202-203.


 


Liang X K, Chen L, Hu Y H. Simulation study on asymmetrical quenching deformation of thick plate[J]. Hot Working Technology, 2013, 42(20): 202-203.


 


[9]齐冲. 铝合金圆筒结构淬火残余应力形成及分布规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.


 


Qi C. Research on Formation and Distribution of Quenching Residual Stress of Aluminum Alloy Cylindrical Structure[D]. Harbin: Harbin Institute of Technology, 2015.


 


[10]姚春臣, 王海云, 刘赞辉, . 30CrMnSiA钢薄壁筒形构件的热处理工艺研究[A]. 全国热处理学会成立50周年纪念大会第九届中国热处理活动周文集[C]. 北京: 中国机械工程学会, 2013.


 


Yao C C, Wang H Y, Liu Z H, et al. Research on heat treatment of thin wall cylindrical spinning parts with 30CrMnSiA steel[A]. Proceedings of the 9th China Heat Treatment Activity Week in Commemoration of the 50th Anniversary of National Society for Heat Treatment[C]. Beijing: Chinese Mechanical Engineering Society, 2013.


 


[11]Yang X W, Zhu J C, Lai Z H, et al. Finite element analysis of quenching temperature field, residual stress and distortion in A357 aluminum alloy large complicated thin-wall workpieces[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1751-1760.


 


[12]杨夏炜. 铝合金大型复杂构件热处理过程的多场耦合模型与变形预报[D]. 哈尔滨: 哈尔滨工业大学, 2013.


 


Yang X W. Multi-field Coupling Models and Deformation Prediction of Aluminum Alloy Large Complicated Workpieces During Treatment[D]. Harbin: Harbin Institute of Technology, 2013.


 


[13]Silva da A D, Pedrosa T A, Gonzalez-Mendez J L, et al. Distortion in quenching an AISI 4140 C-ring-predictions and experiments[J]. Materials & Design, 2012, 42: 55-61.


 


[14]Narazaki M, Kogawara M, Shirayori A, et al. Experimental and simulation studies on asymmetrical quench distortion of long thin steel parts[A]. The 6th International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago: Yamanaka Engineering Co. Ltd., 2012.


 


[15]陈杰. 套类零件淬火变形分析[J]. 热加工工艺, 2008, 37(10): 68-70.


 


Chen J. Analysis of quenching deformation for case parts[J]. Hot Working Technology, 2008, 37(10): 68-70.


 


[16]顾剑锋, 潘健生, 胡明娟. 淬火冷却过程中表面综合换热系数的反传热分析[J]. 上海交通大学学报, 1998, (2): 19-22.


 


Gu J F, Pan J S, Hu M J. Inverse heat conduction analysis of synthetical surface heat transfer coefficient during quenching process[J]. Journal of Shanghai Jiaotong University, 1998, (2): 19-22.


 


[17]Murat T, Ralph T S. Quench sensitivity of 2219-T87 aluminum alloy plate[J]. Materials Science & Engineering A, 2010, 527(18-19): 5033-5037.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9