摘要:
|
压裂泵阀箱因其使用工况特殊,不仅各向力学性能要求很高,且要求横向性能与纵向性能尽可能接近;然而,阀箱锻件为矩形截面轴类锻件,在锻造生产过程中由于金属纤维流线的存在,难以保证锻件的横向性能与纵向性能一致。针对锻件异向性的影响因素,对此类锻件的成形特点和锻造工艺现状进行了分析;以控制锻件金属流线为核心思路,对现有锻造成形工艺进行了优化,采用合锻换向和三向镦粗拔长的工艺改善了锻件异向性。为进一步提升阀箱锻件各向性能和同批次锻件性能的均匀性,结合空心类锻件成形特点和性能优势,创新性地提出将矩形截面轴类锻件转换为环圈锻件来锻造成形的工艺技术。通过实际生产,验证了该工艺技术的有效性和先进性。
|
For the special working conditions of valve box for fracturing pump, not only the mechanical properties in all directions are very high, but also the transverse and longitudinal properties are required to be as close as possible. However, the valve box forgings are shaft forgings with a rectangular section, and it is difficult to ensure that the transverse performance is consistent with the longitudinal performance, because of the metal fiber streamlines generated during the forging process. Therefore, for the influencing factors of the anisotropy of forgings, the forming characteristics and forging process status of such forgings were analyzed. Based on the idea of controlling the metal streamline of forgings,the existing forging process was optimized,and the anisotropy of forgings was improved by using the technology of merging forging to change the direction of forgings and the technology of upsetting and drawing from three directions. In order to further improve the anisotropy performance of valve box forgings and the performance uniformity of the same batch forgings, combined with the forming characteristics and performance advantages of hollow forgings, the forging technology of transforming rectangular cross-section shaft forgings into ring forgings was innovatively proposed, and the effectiveness and advancement of the process technology were verified by actual production.
|
基金项目:
|
|
作者简介:
|
作者简介:陈明(1985-),男,学士,工程师,E-mail:chenming123citic@163.com
|
参考文献:
|
[1]王国荣, 胡刚,何霞,等. 基于灰色系统理论的压裂泵阀箱用钢疲劳寿命预测[J]. 热加工工艺,2015,44(6):48-52. Wang G R,Hu G,He X,et al. Fatigue life prediction of steel used in fracture pump fluid cylinder based on gray system theory[J]. Hot Working Technology,2015,44(6):48-52. [2]何霞, 赵敏,陈林燕,等. 压裂泵阀箱自增强技术仿真研究[J]. 机械科学与技术,2014,33(2):208-211. He X,Zhao M,Chen L Y,et al. Fatigue life analysis for fluid cylinder based on autofrettage technology[J]. Mechanical Science and Technology for Aerospace Engineering,2014,33(2):208-211. [3]蒋世斌, 黎宗琪,贾兵兵,等. 非常规油气田压裂作业阀箱的结构创新[J]. 钻采工艺,2017,40(4):72-74. Jiang S B,Li Z Q,Jia B B,et al. Structural innovation of valve box for fracturing in unconventional oil and gas fields[J]. Drilling & Production Technology,2017,40(4):72-74. [4]GB/T 10561—2005,钢中非金属夹杂物含量的测定标准评级图显微检验法[S]. GB/T 10561—2005,Steel—determination of content of nonmetallic inclusions—micrographic method using standards diagrams [S]. [5]JB/T 5000.15—2007,重型机械通用技术条件第15部分:锻钢件无损探伤[S]. JB/T 5000.15—2007, Heavy mechanical general techniques and standards—Part 15: Non-destructive inspection of forged steel [S]. [6]程巨强, 刘志学. 金属锻造加工基础[M]. 北京:化学工业出版社,2012. Chen J Q,Liu Z X. Metal Forging Processing Foundation[M]. Beijing: Chemical Industry Press,2012. [7]刘助柏, 倪利勇,刘国晖,等. 大型轴类锻件的特殊锻造法[J]. 中国机械工程,2006,17(8):877-879. Liu Z B,Ni L Y,Liu G H,et al. Special forging method for heavy axial forgings[J]. China Mechanical Engineering,2006,17(8):877-879. [8]杨静怡, 易幼平,黄始全. 锻造流线取向对超高强钢抗腐蚀性能的影响[J]. 热加工工艺,2017,46(12):92-94. Yang J Y,Yi Y P,Huang S Q. Effect of forging flow line orientation on corrosion resistance of ultrahigh strength steel[J]. Hot Working Technology,2017,46(12):92-94. [9]辛向阳, 刘方红,邓蜀宁. 大锻件锻造方法综述[J]. 大型铸锻件,1999,(1):43-52. Xin X Y,Liu F H,Deng S N. Review of forging methods for large forgings[J]. Heavy Casting and Forging,1999,(1):43-52. [10]吴贵军, 刘嵩,何寒,等. 大锻件拔长工艺优化[J]. 铸造技术,2018,39(6):1309-1311. Wu G J,Liu S,He H,et al. Optimization design of heavy forgings stretching process[J]. Foundry Technology,2018,39(6):1309-1311. [11]安红萍, 李婷,栗玉杰. 改善轴类锻件力学性能的研究[J]. 大型铸锻件,2015,(2):1-5. An H P,Li T,Li Y J. Research on the improvement of mechanical properties of shaft forgings[J]. Heavy Casting and Forging,2015,(2):1-5.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|