网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于状态反馈的锻造加热炉温度控制方法
英文标题:Temperature control method on forging heating furnace based on state feedback
作者:李中望 余云飞 徐琬婷 
单位:芜湖职业技术学院 东南大学 
关键词:锻造加热炉 温度控制 状态反馈 滞后性 全阶状态观测器 
分类号:TP273
出版年,卷(期):页码:2021,46(7):124-128
摘要:
锻造加热炉是锻压技术领域的重要设备,在加热过程中要求锻件的内外温度均匀,否则会形成内外温度差,从而在锻件内部产生应力,导致锻件缺陷。针对锻造加热炉的炉温,引入状态反馈控制,分析了某炉温状态反馈控制系统在满足性能指标时控制器最大输出超过最大允许值的情况,并通过适当地延长调节时间,有效地降低了系统控制器的输出。同时,通过在系统中设置全阶状态观测器,对估计模型与实际系统之间的误差进行补偿,提高了系统精度,并提出了去滞后的方法和思路,通过仿真进行了锻造加热炉温控系统去掉纯滞后的前后对比,得到了变换后系统与变换前系统间的相对作用强度为0.6775,体现出较好的替代性能。
Forging heating furnace is an important equipment in the field of forging and stamping technology. In the heating process, the internal and external temperatures of forgings are required to be uniform, otherwise the temperature difference between the internal and external temperatures is formed, which generates the stress inside the forgings to cause the defects. Therefore, for the furnace temperature of the forging heating furnace, the state feedback control was introduced, and the situation that the maximum output of the controller exceeded the maximum allowable value when the performance indicators were met for a furnace temperature state feedback control system was analyzed. Then, the output of the system controller was effectively reduced by appropriately extending the regulating time. At the same time, a full-order state observer was set in the system to compensate the error between the estimated model and the actual system to improve the system accuracy. Furthermore, the method and idea of removing hysteresis were also put forward, and the temperature control system of forging heating furnace before and after the pure hysteresis was removed was compared by simulation. Thus, the relative strength of interaction between the transformed system and the original system was obtained with 0.6775, which showed a better replacement performance.
基金项目:
安徽省2017年度高校优秀青年人才支持计划重点项目(gxyqZD2017140);芜湖职业技术学院2018年度科技创新团队建设项目(Wzykj2018A03);安徽省2018年度高水平专业建设项目(2018ylzy157);安徽省高校自然科学研究重点项目(KJ2020A0911,KJ2019A0974)
作者简介:
作者简介:李中望(1982-),男,硕士,副教授,E-mail: L0072000@163.com
参考文献:
[1]孙勇, 苏畅,杨晓津.基于现场总线的锻造自动化生产线控制系统[J].锻造与冲压,2013,(21): 34-40.
Sun Y,Su C,Yang X J. The forging automatic production line control system based on field bus [J].Forging & Metalforming,2013,(21): 34-40.
[2]裴红蕾, 刘刚,赵翠萍. 基于二级控制器的重型锻造液压机同步控制[J].锻压技术,2019,44 (1): 124-128,147.
Pei H L,Liu G,Zhao C P. Heavy-duty forging hydraulic press synchronous control based on secondary controller [J]. Forging & Stamping Technology,2019,44 (1): 124-128,147.
[3]宋新伟. 连杆精密锻造自动化生产线[J].锻压装备与制造技术,2017,52 (6): 67-69.
Song X W.Automatic production line of precision forging process for connecting rod [J].China Metalforming Equipment & Manufacturing Technology,2017,52 (6): 67-69.
[4]刘佳璐. 锻造炉温度场的研究与建模[D].天津:天津大学,2012.
Liu J L.Research and Modeling of Forge Furnace Temperature Field[D].Tianjin: Tianjin University,2012.
[5]Liu Y J,Li J D,Misra R D K,et al.A numerical analysis of slab heating characteristics in a rolling type reheating furnace with pulse combustion[J].Applied Thermal Engineering,2016,107: 1304-1312.
[6]张立众, 马永翔.基于Matlab的电阻炉温度模糊控制系统设计及仿真[J].哈尔滨商业大学学报: 自然科学版,2017,33 (6): 720-722.
Zhang L Z,Ma Y X.Simulation of furnace temperature fuzzy PID compound control based on Matlab[J].Journal of Harbin University of Commerce: Natural Sciences,2017,33 (6):720-722.
[7]张文龙. 厨用燃油燃气节能系统的研究[D].沈阳: 沈阳理工大学,2011.
Zhang W L.Study of Cooking Fuel Gas Energy Saving System[D].Shenyang: Shenyang University of Technology,2011.
[8]左霞. 热处理炉炉温均温性测试方法及结果评定[J].计测技术,2010,30 (3): 62-63.
Zuo X.Test method and result evaluation of temperature uniformity of heat treatment furnace[J].Metrology & Measurement Technology,2010,30 (3): 62-63.
[9]廖炼斌, 宋玲,刘新华.天然气高速烧嘴点火性能的探讨[J].工业炉,2005,27 (4): 17-19.
Liao L B,Song L,Liu X H.Discussing the ignition performance of natural gas high speed burner[J].Industrial Furnace,2005,27 (4): 17-19.
[10]Tang G,Wu B,Bai D,et al. Modeling of the slab heating process in a walking beam reheating furnace for process optimization [J].International Journal of Heat and Mass Transfer,2017,113: 1142-1151.
[11]舒怀林. PID神经元网络及其控制系统[M].北京: 国防工业出版社,2006.
Shu H L.PID Neural Network and Its Control System[M].Beijing: National Defense Industry Press,2006.
[12]贾超, 周俊强. 基于AMESim-MATLAB/Simulink的液压机新型控制器设计及联合仿真[J].锻压技术,2019,44 (11): 146-151.
Jia C,Zhou J Q.Design and joint simulation on new controller for hydraulic press based on AMESim-MATLAB/Simulink[J].Forging & Stamping Technology,2019,44 (11): 146-151.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9