摘要:
|
为了提高大负载输出泵控电液伺服系统滑模控制方法对非匹配干扰的影响,采用反步法对系统非匹配干扰进行补偿,通过光滑连续一阶可导滑模技术来消除滑模与反步控制的冲突,并通过联合仿真验证滑模反步控制设计的准确性。研究结果表明:滑模反步控制器结果最接近参考信号,误差最小,表现出最优的稳定性。滑模反步控制器输出电流最小,波动效果最低,证明所设计的光滑连续滑模控制律有效地抑制了输出抖动。滑模反步控制器获得了比反步控制器和PID控制器更小的IMSE和IAPE,表明在控制器输出强度较低的条件下,利用滑模反步控制器达到了优于PID控制器与反步控制器的控制性能。滑模反步控制器则同时拥有反步控制与滑模控制的优点,不需建立精确模型也能够达到较好的控制性能。
|
In order to improve the influence of sliding mode control method on the unmatched interference of pump-controlled electro-hydraulic servo system with large load output, the backstepping method was used to compensate the unmatched interference of the system, and the conflict between sliding mode and backstepping control was eliminated by the smooth continuous first-order guided sliding mode technology. Then, the accuracy of sliding mode backstepping control design was verified by co-simulation. The results show that the results of the sliding mode backstepping controller are the closest to the reference signal, and the error is the smallest to show the best stability. Furthermore, the sliding mode backstepping controller has the minimum output current and the lowest fluctuation effect to prove that the designed smooth continuous sliding mode control law effectively suppresses the output jitter, and the sliding mode backstepping controller achieves smaller IMSE and IAPE than the backstepping controller and the PID controller to indicate that the sliding mode backstepping controller achieves better control performance than the PID and backstepping controllers under the condition of low output strength of the controller. Thus, the sliding mode backstepping controller has the advantages of both backstepping control and sliding mode control and can achieve better control performance without establishing an accurate model.
|
基金项目:
|
河南省交通运输科技计划项目(2015Y10)
|
作者简介:
|
作者简介:朱学军(1965-),男,学士,副教授,E-mail:Zhuxuejun2021@163.com
|
参考文献:
|
[1]陈革新, 赵鹏辉, 刘小胜, 等. 电液伺服闭式泵控系统位置前馈补偿控制研究[J].液压与气动,2019,(12):28-32. Chen G X, Zhao P H, Liu X S, et al. Research on position feedforward compensation control of electro-hydraulic servo closed pump control system [J].Hydraulics & Pneumatics, 2019, (12):28-32. [2]Wang L T, Gong G F, Yang H Y, et al. The development of a high-speed segment erecting system for shield tunneling machine[J]. ASME Transactions on Mechatronics, 2013, 18(6): 1713-1723. [3]Pi Y J, Wang X Y. Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances[J]. Control Engineering Practice, 2011, 19 (2): 185-193. [4]汪成文, 焦宗夏, 罗才瑾. 基于改进的速度同步控制的电液负载模拟器[J]. 航空学报, 2012, 33(9): 1717-1725. Wang C W, Jiao Z X, Luo C J. An improved velocity synchronization control on electrohydraulic load simulator[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1717-1725. [5]钱占松. 三通阀控单作用缸在电液位置伺服系统的应用研究[J].液压与气动,2020,(6):127-134. Qian Z S. Application research of three-way valve controlled single-acting cylinder in electro-hydraulic position servo system [J]. Hydraulics & Pneumatics,2020, (6):127-134. [6]石胜利, 李建雄, 方一鸣. 具有输入饱和的电液伺服系统反步位置跟踪控制[J]. 中南大学学报: 自然科学版, 2016, 47(10): 3369-3374. Shi S L, Li J X, Fang Y M. Backstepping position tracking control for electro-hydraulic servo system with input saturation[J]. Journal of Central South University: Science and Technology, 2016, 47(10): 3369-3374. [7]Wang C W, Jiao Z X, Quan L. Nonlinear robust dual-loop control for electro-hydraulic load simulator [J]. ISA Transactions, 2015, 59: 280-289. [8]李浩, 窦丽华, 苏中. 非匹配不确定系统的自适应反步非奇异快速终端滑模控制[J]. 控制与决策, 2012, 27(10): 1584-1587, 1592. Li H, Dou L H, Su Z. Adaptive backstepping nonsingular fast terminal sliding mode control for mismatched uncertain systems[J]. Control and Decision, 2012, 27(10):1584-1587, 1592. [9]Yang J, Li S H, Su J Y, et al. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[J]. Automatica, 2013, 49(7): 2287-2291. [10]Wang C W, Quan L, Jiao Z X, et al. Nonlinear adaptive control of hydraulic system with observing and compensating mismatching uncertainties[J]. IEEE Transactions on Control Systems Technology, 2018, 26 (3): 927-938. [11]蒲明, 吴庆宪, 姜长生, 等. 非匹配不确定高阶非线性系统递阶Terminal 滑模控制[J]. 自动化学报, 2012, 38(11): 1777-1793. Pu M, Wu Q X, Jiang C S, et al. Recursive terminal sliding mode control for higher-order nonlinear system with mismatched uncertainties[J]. Acta Automatica Sinica, 2012, 38(11): 1777-1793. [12]吉鑫浩, 汪成文, 陈帅, 等. 阀控电液位置伺服系统滑模反步控制方法[J]. 中南大学学报:自然科学版, 2020, 51(6): 1518-1525. Ji X H, Wang C W, Chen S, et al. Sliding mode backstepping control method for valve-controlled electro-hydraulic position servo system [J]. Journal of Central South University: Science and Technology, 2020,51(6): 1518-1525. [13]孙国法, 魏巍. 一类严格反馈系统变比例增益精确微分补偿控制[J]. 控制与决策, 2020, 35(6): 1490-1496. Sun G F, Wei W. Exact differential compensation control with variable proportional gain for a class of rigid feedback systems[J]. Control and Decision, 2020, 35(6): 1490-1496. [14]Yin X X, Lin Y G, Li W, et al. Adaptive sliding mode back-stepping pitch angle control of a variable displacement pump controlled pitch system for wind turbines [J]. ISA Transactions, 2015, 58: 629-634. [15]郑剑飞, 冯勇, 杨旭强. 非匹配不确定多变量系统高阶终端滑模控制[J]. 电机与控制学报, 2009, 13(1): 117-122. Zheng J F, Feng Y, Yang X Q. High-order terminal sliding mode control of mismatched uncertain multivariable systems[J]. Electric Machines and Control, 2009, 13(1): 117-122.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|