摘要:
|
针对液压机滑块的四角调平电液系统,提出了一种基于空间任务坐标系的控制方法。分析滑块与调平缸的运动关系与空间位置关系,从而建立坐标转换矩阵,将液压机滑块四角的直线位移坐标转换为滑块中心位移与倾角组成的任务坐标,在任务坐标空间内设计了基于调平力偏置非线性前馈补偿的滑块跟踪运动PID控制器,并且直接针对滑块的倾角设计了调平PID控制器,针对不同控制目标的控制参数是独立调节、互不影响的。设计了基于调平力偏置的预加速过程,以缓解滑块与调平缸接触时的冲击。最后,在25000 kN玻璃钢液压机上对所提控制方法的有效性进行实验验证。实验中,调平缸分别定位于平面矩形的四角,矩形尺寸为3550 mm×2900 mm。实验结果表明:使用基于任务坐标系的四角调平控制方法后,液压机滑块绕坐标轴x、y的旋转倾角分别被控制在0.0032°和0.0045°以内,各调平缸的位移偏差不超过0.45 mm。
|
For four-corner leveling electro-hydraulic system of hydraulic press slider, a control method was presented based on space task coordinate system, and the movement relationship and spatial position relationship between press slider and leveling hydraulic cylinders were analyzed to established a coordinate transform matrix. Then, the linear displacement coordinates of the four corners for press slider were converted into the task coordinates composed of center displacement and inclination angle of slider, and the slider tracking motion PID controller was designed in the task coordinate space based on the non-linear feedforward compensation of leveling force bias. Furthermore, the leveling PID controller was designed directly for the inclination angle of slider, and the control parameters for different control targets were independently adjusted without affecting each other. In addition, the pre-acceleration process based on the leveling force bias was designed to alleviate the impact when the slider contacted the leveling hydraulic cylinder. Finally, the effectiveness of the proposed control method was verified by experiments on the hydraulic press 25000 kN FRP, and in the experiment, the leveling hydraulic cylinders were respectively located at the four corners of a plane rectangle with 3550 mm×2900 mm. The experiment results show that after using the four-corner leveling control method based on the task coordinate system, the rotation inclination angles of the hydraulic press slider around the coordinate axis x and y are controlled within 0.0032°, and 0.0045° respectively, and the displacement deviation of the leveling hydraulic cylinder does not exceed 0.45 mm.
|
基金项目:
|
江苏省双创人才
|
作者简介:
|
作者简介:熊义(1986-),男,博士,工程师,E-mail:shonyee@163.com
|
参考文献:
|
[1]Sun C, Wei J, Fang J, et al. Co-simulation ADAMS-Simulink for analysis of passive four-point leveling system of the hydraulic press [A]. Proceedings of the BATH/ASME 2016 Symposium on Fluid Power and Motion Control[C]. New York: ASME, 2016. [2]孙春耕, 叶维本. 复合材料液压机四角调平控制系统设计 [J]. 机床与液压, 2020, 48(4): 103-105. Sun C G, Ye W B. Design of composite hydraulic press four-corner leveling control system [J]. Machine Tool & Hydraulics, 2020, 48(4): 103-105. [3]李欣, 王晓燕. 基于EtherCAT和遗传-BP神经网络的等温锻造电液伺服系统优化研究[J]. 机电工程, 2019, 36(5): 534-538. Li X, Wang X Y. Optimize for isothermal forging electro-hydraulic servo system based on EtherCAT and genetic-BP neural network [J]. Journal of Mechanical & Electrical Engineering, 2019, 36(5): 534-538. [4]韩其义, 张英男. 等温锻造液压机的四角调平控制系统[J]. 锻压装备与制造技术, 2010, 45(6): 28-30. Han Q Y, Zhang Y N. A four corners leveling control system of isothermal forging press [J]. China Metalforming Equipment & Manufacturing Technology, 2010, 45(6): 28-30. [5]徐济宣, 马辉. 重型液压机执行器自适应滑模容错控制[J]. 锻压技术, 2020, 45(4): 140-147. Xu J X,Ma H. Adaptive sliding mode fault-tolerant control of actuator for heavy-duty hydraulic press [J]. Forging & Stamping Technology, 2020, 45(4): 140-147. [6]郭玉玺, 张利. 350 MN多向双动挤压液压机活动横梁纠偏调平策略[J]. 锻压技术, 2020, 45(7): 153-159. Guo Y X, Zhang L. Correction and leveling strategy on movable beam for 350 MN multi-directional double-action extrusion hydraulic press [J]. Forging & Stamping Technology, 2020, 45(7): 153-159. [7]陈莹. 特大型热成型压机滑块平行控制系统研究[D]. 杭州: 浙江大学, 2013. Chen Y. Control System for the Slider′s Parallelism of Oversized Thermoforming Press [D]. Hangzhou: Zhejiang University, 2013. [8]乔礼惠, 徐路, 吴国健. 汽车纵梁液压机控制系统及其设置[J]. 锻压装备与制造技术, 2015, 50(4): 31-33. Qiao L H, Xu L, Wu G J. The control method of hydraulic press for truck side member [J]. China Metalforming Equipment & Manufacturing Technology, 2015, 50(4): 31-33. [9]刘涛. 50000 kN整体式汽车大梁液压机液压控制系统的分析研究[D]. 杭州: 浙江大学, 2002. Liu T. Hydraulic Control System of Hydraulic Press for Side Rails of Automotive Frame [D]. Hangzhou: Zhejiang University, 2013. [10]张红. 轧机多缸调平系统耦合同步控制方法[J]. 锻压技术, 2019, 44(5): 110-115. Zhang H. Coupling synchronous control method for multi-cylinder leveling system of rolling mill [J]. Forging & Stamping Technology, 2019, 44(5): 110-115. [11]Lu X, Huang M. System-decomposition-based multilevel control for hydraulic press machine [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1980-1987. [12]裴红蕾, 刘刚,赵翠萍. 基于二级控制器的重型锻造液压机同步控制[J]. 锻压技术, 2019, 44(1): 118-122, 141. Pei H L, Liu G, Zhao C P. Heavy-duty forging hydraulic press synchronous control based on secondary controller [J]. Forging & Stamping Technology, 2019, 44(1): 118-122, 141. [13]郭凡, 魏建华, 张强, 等. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报: 工学版, 2017, 51(10): 1937-1947. Guo F, Wei J H, Zhang Q, et al. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. Journal of Zhejiang University: Engineering Science, 2017, 51(10): 1937-1947.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|