网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
奥氏体不锈钢的高温氧化行为
英文标题:High temperature oxidation behaviour for austenitic stainless steel
作者:张志红 刘洁 张孝元 尉丰婵 
单位:晋中信息学院 
关键词:奥氏体不锈钢 氧化皮 加热 轧制 表面质量 
分类号:TG407
出版年,卷(期):页码:2021,46(7):214-220
摘要:
奥氏体不锈钢被广泛应用在工业、装修、食品、医疗机械等领域,具有良好的耐腐蚀性、耐高温性等。然而,在高温加热过程中,奥氏体不锈钢表面形成的氧化皮会造成钢板产生局部裂纹,影响钢的表面质量。对奥氏体不锈钢进行了高温氧化行为的研究,采用扫描电镜SEM、能谱分析仪EDS和X射线衍射仪XRD观察了钢表面氧化皮在加热和热轧条件下的演变过程。结果表明:在600 ℃时,奥氏体不锈钢表面会形成薄而致密的Cr2O3氧化层;随着温度的升高,钢表面逐渐形成了均匀的双层氧化层,且随时间的增加而增厚;在1250 ℃时,上层的氧化皮Fe3O4容易脱落,与基体分层,下层与基体结合紧密的氧化皮主要为FeO与Cr2O3和含Si元素形成的尖晶石氧化物。而轧制过程中,单层氧化皮脱落后,经过循环氧化破坏,基体表面为破碎块状组织,此时的氧化皮主要由铁的氧化物、Cr2O3沉淀以及FeCr2O4组成。
Austenitic stainless steel is widely used in industry, decoration, food, medical machinery and other fields, and has good corrosion resistance and high temperature resistance, etc. However, the oxide scale formed on the surface of austenitic stainless steel causes local cracks in the steel plate and affects the surface quality of steel during the high temperature heating process. Therefore, the high temperature oxidation behavior of austenitic stainless steel was studied, and the evolution processes of the oxide scale on the steel surface under the heating and hot rolling conditions were observed by SEM, EDS and XRD. The results show that when the temperature is 600 ℃,a thin and dense Cr2O3 oxide layer is formed on the surface of austenitic stainless steel, and with the increasing of temperature, a uniform double-layer oxide layer gradually formes on the surface of steel and thickens over time. However, when the temperature is 1250 ℃,the upper oxide scale Fe3O4 is easy to fall off and layers with the substrate, and the oxide scale with the lower layer and the substrate tightly combined is mainly composed of FeO, Cr2O3 and spinel oxide containing Si element. Furthermore, in the rolling process, the surface of the substrate undergoes cyclic oxidation and is destroyed into a broken block structure after the single layer of oxide scale falls off, and the oxide scale is mainly composed of iron oxide, Cr2O3 precipitation and FeCr2O4.
基金项目:
2020年山西省高等学校教学改革创新项目(J2020457)
作者简介:
作者简介:张志红(1985-),女,硕士,讲师,E-mail:574055042@qq.com
参考文献:
[1]Yu X L, Jiang Z Y, Zhao J W, et al. A review of microstructure and microtexture of tertiary oxide scale in a hot strip mill[J]. Key Engineering Materials, 2016, 716:843-855.
[2]Robert Wonneberger, Martin Seyring, Katharina Freiberg, et al. Oxidation of stainless steel 316L-Oxide grains with pronounced inhomogeneous composition[J]. Corrosion Science, 2019, 149:178-184.
[3]秦丽雁. 添加合金元素对304不锈钢腐蚀及钝化行为的影响(摘译)[J]. 太钢译文, 1997, (3):18-21.
Qin L Y. Effect of adding alloy elements on corrosion and passivation behavior of 304 stainless steel[J]. TISCO Translation, 1997, (3):18-21.
[4]李梦琦. 几种不锈钢高温氧化行为研究[D]. 太原:太原理工大学, 2015.
Li M Q. Research on High Temperature Oxidation of Several Stainless Steel[D]. Taiyuan: Taiyuan University of Technology, 2015.
[5]Pint B A, Tortorelli P F, Wright I G. Effect of cycle frequency on high-temperature oxidation behavior of alumina-forming alloys[J]. Oxidation of Metals, 2002, 58(1-2):73-101.
[6]Cobo S J, Rainforth W M. Factors affecting the development of oxide scales on austenitic stainless steels during hot rolling in steckel mills[J]. Metallurgical & Materials Transactions A, 2008, 39(10):2486-2494.
[7]李冬升, 戴起勋, 王国建,等. Super304H奥氏体不锈钢的抗高温氧化性能[J]. 江苏大学学报: 自然科学版, 2012, 33(5):581-585.
Li D S, Dai Q X, Wang G J, et al. High-temperature oxidation resistance of austenitic stainless steel Super304H[J]. Journal of Jiangsu University:Natural Science Edition, 2012, 33(5):581-585.
[8]夏云鹏, 朱承飞, 范迪民,等. SUS304,SUS430不锈钢的高温氧化过程[J]. 材料保护, 2013, 46(12):27-29.
Xia Y P, Zhu C F, Fan D M, et al. High temperature oxidation process of SUS304 and SUS430 stainless steel[J]. Materials Protection, 2013, 46(12):27-29.
[9]Yu X, Jiang Z, Zhao J, et al. Effect of a grain-refined microalloyed steel substrate on the formation mechanism of a tight oxide scale[J]. Corrosion Science, 2014, 85(4):115-125.
[10]Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels[J]. Corrosion Science, 1991, 32(4): 443-465.
[11]Tien J K, Gamble R P. Effects of stress coarsening on coherent particle strengthening[J]. Metallurgical Transactions, 1972, 3(8): 2157-2162.
[12]Schütze M, Tortorelli P F, Wright I G. Development of a comprehensive oxide scale failure diagram [J]. Oxidation of Metals, 2010, 73: 389-418.
[13]魏天斌. 热轧氧化铁皮的成因及去除方法[J]. 钢铁研究, 2003, 32(4):54-58.
Wei T B. Analysis of scale forming reasons and descaling methods in hot rolling process[J]. Research on Iron and Steel, 2003, 32(4):54-58.
[14]孙彬, 尤宏广, 郝明欣,等. Fe-Si合金的高温氧化行为[J]. 沈阳大学学报: 自然科学版, 2019, 31(4):263-267.
Sun B, You H G, Hao M X, et al. High temperature behavior of Fe-Si alloy[J]. Journal of Shenyang University: Natural Science, 2019, 31(4):263-267.
[15]Wolf M M. Scale formation and descaling in continuous casting and hot rolling: Part X[J]. Iron & Steelmaker, 2000, 27(9): 90-92.
[16]王冰, 贾文征, 马冬鸣.论钢板在加热炉中氧化皮的生成[J].热处理技术与装备, 2003, 24(2): 11-14.
Wang B, Jia W Z, Ma D M. On the formation of oxide scale of steel plate in heating furnace[J].Heat Treatment Technology and Equipment, 2003, 24(2): 11-14.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9