网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
AZ31镁合金单向及交变载荷作用下声发射波形特征对比分析
英文标题:Comparative analysis on acoustic emission waveform characteristic for AZ31 magnesium alloy under unidirectional and alternating loads
作者:贺秀丽 梁红玉 闫志峰 
单位:太原工业学院 
关键词:镁合金 单向载荷 交变载荷 声发射 波形特征 
分类号:TH142.3
出版年,卷(期):页码:2021,46(8):193-198
摘要:

 采用声发射技术对AZ31镁合金在单向及交变载荷作用下的试验过程进行全程监测,对比分析其声发射波形特征,探讨塑性变形的产生及变化对镁合金声发射波形特征的影响。结果表明,不同载荷状态会产生不同的塑性变形,对镁合金声发射波形特征具有重要影响。与单向载荷作用相比,AZ31镁合金在交变载荷作用下,声发射波形具有明显的周期性和台阶现象等特点,其分别与裂纹闭合效应及材料塑性变形损伤有关。此外,AZ31镁合金在交变载荷作用下连续型声发射波形的平均波幅比单向载荷作用下的提高了约80 mV,除了塑性损伤累积的原因外,还有交变载荷作用下外部试验环境中较大背景噪声的作用。

 The whole test process of AZ31 magnesium alloy under unidirectional and alternating loads was monitored by acoustic emission technology, its acoustic emission waveform characteristics were comparied and analyzed, and the influences of  the generation and change of plastic deformation on the acoustic emission waveform characteristics of magnesium alloy were discussed. The results show that the different plastic deformations are produced by different load conditions, which have an important influence on the acoustic emission waveform characteristics of magnesium alloy. Compared with the unidirectional load, the acoustic emission waveform of AZ31 magnesium alloy under alternating load has the characteristics of obvious periodicity and step phenomenon, which are related to crack closure effect and material plastic deformation damage, respectively. Moreover, the average amplitude of continuous acoustic emission waveform for AZ31 magnesium alloy under alternating load is about 80 mV higher than that under unidirectional load. In addition to the accumulation of plastic damage, there is also the effect of large background noise in the external test environment under alternating load.

基金项目:
国家自然科学基金资助项目(51705350);山西省高等学校科技创新项目(2019L0922);山西省青年科技研究基金项目(201801D221137)
作者简介:
贺秀丽(1985-),女,博士,副教授 E-mail:good.168@126.com 通信作者:梁红玉(1968-),女,博士,教授 E-mail:285824749@qq.com
参考文献:

 
[1]陈振华, 严红革, 陈吉华, 等. 镁合金
[M].北京:化学工业出版社, 2004.


 

Chen Z H, Yan H G, Chen J H, et al. Magnesium Alloy
[M]. Beijing: Chemical Industry Press, 2004.

 


[2]杨新岐, 许海生,耿立艳,等. 局部法评定铝合金3A21角接接头疲劳性能
[J]. 机械强度, 2005, 27(6): 830-834.

 

Yang X Q, Xu H S, Geng L Y, et al. Fatigue assessment of aluminum alloy 3A21 gusset welded joints by local approach
[J]. Journal of Mechanical Strength, 2005, 27(6): 830-834.

 


[3]王文先, 贺秀丽, 张红霞, 等. 基于CDM法AZ31B镁合金焊接接头疲劳评定
[J]. 焊接学报, 2010, 31(10): 13-16.

 

Wang W X, He X L, Zhang H X, et al. Fatigue assessment of welded joints of AZ31B magnesium alloy by using critical distance method
[J]. Transactions of the China Welding Institution, 2010, 31(10): 13-16.

 


[4]Yan Z, He X, Wang W X, et al. Fatigue assessment of welded joints in AZ31B magnesium alloy by a critical plane method
[J]. Rare Metal Materials and Engineering, 2014, 43(11): 2669-2674.

 


[5]ler K. Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts
[J]. International Journal of Fatigue, 2013, 49: 1-17.

 


[6]Padmanaban G, Balasubamanian V, Reddy G. Fatigue crack growth behaviour of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints
[J]. Journal of Materials Processing Technology, 2011, 211(7): 1224-1233.

 


[7]Xu N, Bao Y. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling
[J]. Materials Science and Engineering A, 2016, 655: 292-299.

 


[8]Bolchoun A, Sonsino C, Kaufmann H. Multiaxial random fatigue of magnesium laserbeam-welded joints-experimental results and numerical fatigue life evaluation
[J]. Procedia Engineering, 2015, 101: 61-68.

 


[9]Yan Z, Zhang H, Wang W X, et al. Temperature evolution in a magnesium alloy during static and cyclic loading
[J]. Materials Science and Technology, 2014, 30(10): 1129-1234.

 


[10]Yan Z, Zhang H, Wang W X, et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography
[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 1942-1948.

 


[11]Yan Z, Zhang H, Wang W X, et al. Temperature evolution mechanism of AZ31B magnesium alloy during high-cycle fatigue process
[J]. Theoretical and Applied Fracture Mechanics, 2014, 70: 30-38. 

 


[12]吴圣川, 胡雅楠, 付亚楠, 等. 铝合金焊缝疲劳开裂的原位同步辐射X射线成像
[J]. 焊接学报, 2015, 36(12): 5-8.

 

Wu S C, Hu Y N, Fu Y N, et al. Study on fatigue cracking of welded aluminum alloys via in situ synchrotron radiation X-ray microtomography
[J]. Transactions of the China Welding Institution, 2015, 36(12): 5-8.

 


[13]沈功田. 声发射检测技术及应用
[M]. 北京: 科学出版社, 2015.

 

Shen G T. Acoustic Emission Technology and application
[M]. Beijing: Science Press, 2015.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9