网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
真空感应熔炼制备Al0.86Ga0.14Nb半导体合金热轧变形行为
英文标题:Hot rolling deformation behavior on Al0.86Ga0.14Nb semiconductor alloy prepared by vacuum induction melting
作者:薛涛 韩春红 刘玉芳 
单位:焦作师范高等专科学校 河南理工大学 
关键词:AlGaNb合金 真空感应熔炼 热轧 变形行为 微观组织 位错 
分类号:TG146
出版年,卷(期):页码:2021,46(8):205-209
摘要:

 选择热轧方法制备AlGaNb合金试样,对此过程的组织结构变化与变形行为进行了分析。研究结果表明:在铸态Al0.86Ga0.14Nb合金中形成了大量片状组织,其尺寸在200~240 μm之间,α2/γ片层间距在0.3~0.6 μm范围内,片层团晶界区域形成了粒径约为Φ8 μm的γ相晶粒;获得了厚度接近1 mm的AlGaNb合金,形成了光滑的界面组织。当片层受到热轧力的作用后,除了发生偏转外,还形成了间距更大的片层,获得了更宽的γ板条,而α2相的宽度减小。最初的变形阶段在片层板条内形成堆垛位错,γ相晶粒内发生了明显的位错塞积;在后续变形过程中,亚结构不断转变为大角度晶界,产生了更多的再结晶晶粒。在Al0.86Ga0.14Nb合金内形成了形态差异很大的孪晶组织,并且宽度均较大,大部分孪晶位于片层组织的晶界区域。

 AlGaNb alloy samples were prepared by hot rolling method, and the structural changes and deformation behavior of this process were analyzed. The results show that many flake-like structures are formed in the as-cast Al0.86Ga0.14Nb alloy with the size of 200-240 μm, and γ-phase grains with the diameter of about Φ8 μm are formed in the grain boundary region of lamellar cluster with the α2/γ lamella spacing of 0.3-0.6 μm. Then, AlGaNb alloy with the thickness of close to 1 mm is obtained, and the smooth interface structure is formed. When the lamellae are subjected to hot rolling force, they are deflected and formed with larger spacing to obtain wider γ-slats, and the width of α2 phase is reduced. However, in the initial deformation stage, the stacking dislocation is formed in the lamellae, and the significant dislocation plugging occurs in the γ phase grains. Furthermore, in the subsequent deformation process, the substructure is changed to large angle grain boundary, and the more recrystallized grains are produced. In addition, the twin structures with larger morphologic differences are formed in Al0.86Ga0.14Nb alloy, their widths are relatively larger, and most of the twins are located in the grain boundary region of lamellar structure.

基金项目:
国家自然科学基金资助项目(41872176);河南省高等学校重点科研资助项目(18B170004)
作者简介:
薛涛(1977-),男,硕士,讲师 E-mail:jzszxuetao@126.com
参考文献:

 
[1]Kim S T, Moon D C, Amano H, et al. Optically pumped stimulated emission and optical gain from an AlGaN/GaN double heterostructure at room temperature
[J]. Sae Mulli,1995,35(3) 415-419.


 


[2]Turuvekere S, Rawal D S, Dasgupta A, et al.Evidence of fowler-nordheim tunneling in gate leakage current of AlGaNbN/GaN HEMTs at room temperature
[J]. IEEE Transactions on Electron Devices, 2014, 61(12):4291-4294.

 


[3]Kuokstis E, Chen C Q, Yang J W, et al. Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics
[J]. Applied Physics Letters, 2004, 84(16):2998-3000.

 


[4]黄同瑊, 晁代义, 宋晓霖, 等. 热轧工艺对Al-Cu-Mg合金组织及性能的影响
[J].材料导报, 2020, 34(S1):322-324.

 

Huang T Z, Chao D Y, Song X L, et al. Effect of hot rolling process on microstructure and properties of Al-Cu-Mg alloy
[J]. Materials Reports, 2020, 34 (S1): 322-324.

 


[5]吴宗河, 祁梓宸, 许朋朋, 等. 热轧7075/AZ31B复合板的显微组织及结合性能
[J].工程科学学报, 2020, 42(5):620-627.

 

Wu Z H, Qi Z C, Xu P P, et al. Microstructure and binding properties of hot rolled 7075/AZ31B composite plate
[J]. Chinese Journal of Engineering, 2020, 42(5):620-627.

 


[6]童灯亮, 易幼平, 黄始全, 等. 变形温度对2A14铝合金组织与力学性能的影响
[J].材料导报, 2020, 34(6):6100-6104.

 

Tong D L, Yi Y P, Huang S Q, et al. Effect of deformation temperature on the microstructure and mechanical properties of 2A14 aluminum alloy
[J]. Materials Reports, 2020, 34(6):6100-6104.

 


[7]周珊, 孙有平, 何江美, 等. 温度对大应变轧制Al-Mg-Si-Cu-Zr合金的组织及性能的影响
[J].材料热处理学报, 2019, 40(5): 65-70.

 

Zhou S, Sun Y P, He J M, et al. Effect of temperature on microstructure and properties of large strain rolling Al-Mg-Si-Cu-Zr alloys
[J]. Transactions of Materials and Heat Treatment, 2019, 40(5):65-70. 

 


[8]廉良冲, 蒋瑞斌, 伍浩. 2022铝合金冷热轧板强度及其各向异性分析
[J].机械强度, 2018, 40(4):943-947.

 

Lian L C, Jiang R B, Wu H. Strength and anisotropy analysis of 2022 aluminum alloy cold and hot rolled plate
[J]. Journal of Mechanical Strength, 2008, 40(4):943-947.

 


[9]范才河, 严红革, 彭英彪, 等. 大应变热轧喷射成形高镁铝合金的微观结构及力学性能
[J].中国有色金属学报, 2017, 27(1):64-71.

 

Fan C H, Yan H G, Peng Y B, et al. Microstructure and mechanical properties of high magnesium aluminum alloy by large strain hot rolling jet forming
[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1):64-71.

 


[10]杨鹏, 吕燕伍, 王鑫波. AlN插入层对AlxGa(1-x)N/GaN界面电子散射的影响
[J].物理学报, 2015, 64(19):293-299.

 

Yang P, Lyu Y W, Wang X B. Effect of AlN insertion layer on electron scattering at AlxGa(1-x)N/GaN interface
[J]. Acta Physica Sinica, 2015, 64(19):293-299.

 


[11]Shi L Y, Bo S, Yan J C, et al. Localized deep levels in AlxGa1-xN epitaxial films with various Al compositions
[J]. Chinese Physics B, 2014, 23(11):116102.

 


[12]Yadav V K, Mir S H, Singh J K. Electronic properties and superior CO2 capture selectivity of metal nitride (XN) and phosphide (XP) (X=Al, Ga and In) sheets
[J]. Applied Surface Science, 2020, 527(16): 146445.

 


[13]Chen G L, Xu X J, Teng Z K, et al. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale
[J]. Intermetallics, 2007, 15(5-6): 625-631.

 


[14]张建斌, 刘军军, 李庆林. Ga含量对Al-Mg-Ga-Sn合金组织和降解性的影响
[J].稀有金属材料与工程, 2019, 48(12):4039-4045.

 

Zhang J B, Liu J J, Li Q L. Effects of Ga content on microstructure and degradation of Al-Mg-Ga-Sn alloys
[J]. Rare Metal Materials and Engineering, 2019, 48(12):4039-4045.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9