网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
冷轧压下率对汽车电极用W-20Cu合金导电及力学性能的影响
英文标题:Effects of cold rolling reduction rate on electrical conductivity and mechanical properties of W-20Cu alloy for automotive electrodes
作者:郭斌峰 刘伟峰 马心坦 
单位:郑州工业应用技术学院 河南科技大学 
关键词:W-Cu合金 冷轧 热处理 微观组织 力学性能 导电性能 
分类号:TG146.1+1
出版年,卷(期):页码:2021,46(8):244-250
摘要:

 为了提高经铝热反应工艺制得的汽车电极用W-20Cu合金的导电及力学性能,采用冷轧以及450 ℃+1 h的热处理工艺对其性能进行加强。通过实验测试手段,研究不同冷轧压下率下热处理前后W-20Cu合金的导电及力学性能的变化,并深入研究了该合金的性能强化作用机制。研究结果表明:热处理后,合金析出相尺寸明显增大,并且数量也显著增加;冷轧合金基体中形成了更大的析出相,并生成了许多细小的析出相,在Cu基体中呈现弥散态分布状态;冷轧合金进行热处理后获得了更高的电导率,提高冷轧压下率后,合金硬度发生了明显提高,冷轧压下率达到80%时,合金硬度提高至118.6 HV;热处理后,合金强度与塑性得到提升,冷轧压下率为80%的冷轧合金经过450 ℃+1 h热处理后获得了最优综合性能;冷轧压下率为80%时,合金断口形成了脆断组织,经过热处理的断口区域产生了数量众多的韧窝,表现为韧性断裂。

 In order to improve the electrical conductivity and mechanical properties of W-20Cu alloy for auto electrodes prepared by thermal-aluminum reaction process, the properties of the alloy were strengthened by cold rolling and heat treatment at 450 ℃+1 h, and the changes of electrical conductivity and mechanical properties for W-20Cu alloy before and after heat treatment under different cold rolling reduction rates were studied by experimental test, and the performance strengthening mechanism of the alloy was further studied. The results show that the size and quantity of precipitates increase significantly after heat treatment, and the larger precipitates and many fine precipitates are formed in the cold rolled alloy matrix, which are dispersed in the Cu matrix. Then, the higher electrical conductivity of cold rolled alloy is obtained after heat treatment, the hardness of alloy is significantly improved after increasing the cold rolling reduction rate, and the hardness of alloy increases to 118.6 HV when the reduction rate reaches 80%. Finally, the strength and plasticity of alloy are improved after heat treatment, the best comprehensive property of cold rolled alloy after the heat treatment at 450 ℃+1 h 

is obtained. When the reduction rate is 80%, the brittle fracture structure forms in the fracture of alloy, and a large number of dimples are produced in the fracture area after heat treatment, which shows the phenomenon of ductile fracture.
基金项目:
河南省高等教育教改基金项目(2019SJGLX512);河南省高等学校重点科研项目(15A460019)
作者简介:
郭斌峰(1977-),男,硕士,讲师 E-mail:gbf19770311@126.com
参考文献:

 
[1]Zhang S J,Li R G,Kang H J,et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment
[J]. Materials Science and Engineering A,2017,680(5): 108-114.


 


[2]倪子枫, 凤仪,赵浩,等. W-Cu复合材料在不同电压下的电弧烧蚀性能研究
[J]. 功能材料,2021,52(2): 2124-2130.

 

Ni Z F,Feng Y,Zhao H,et al. Study on arc ablation properties of W-Cu composites at different voltages
[J]. Journal of Functional Materials,2021,52(2): 2124-2130.

 


[3]陈安琦, 霍望图,董龙龙,等. 先进铜钨复合材料研究进展
[J]. 中国材料进展,2021,40(2): 152-160. 

 

Chen A Q,Huo W T,Dong L L,et al. Research progress of advanced copper-tungsten composites
[J]. China Materials Progress,2021,40(2): 152-160.

 


[4]胡号旗, 许赪,杨丽景,等. 高强高导铜铬锆合金的最新研究进展
[J]. 材料导报,2018,32(3): 453-460. 

 

Hu H Q,Xu C,Yang L J,et al. Recent advances in the research of high strength and high conductivity Cu-Cr-Zr alloy
[J]. Materials Review,2018,32(3): 453-460.

 


[5]任俊鹏, 王毓,赵君,等. 钨渗铜复合材料致密化机理研究
[J]. 稀有金属与硬质合金,2020,48(4): 17-23. 

 

Ren J P,Wang Y,Zhao J,et al. Study on densification mechanism of tungsten-cemented copper composites
[J]. Rare Metals & Cemented Carbides,2020,48(4): 17-23.

 


[6]梁博, 王庆娟,周晓,等. 时效对ECAP变形Cu-Cr-Zr 合金组织与性能的影响
[J]. 金属热处理,2017,42(7): 43-45. 

 

Liang B,Wang Q J,Zhou X,et al. Effect of aging on microstructure and properties of ECAPed Cu-Cr-Zr alloy
[J]. Heat Treatment of Metals,2017,42(7): 43-45.

 


[7]Huang A H,Wang Y F,Wang M S,et al. Optimizing the strength,ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment
[J]. Materials Science and Engineering A,2019,746(11): 211-216. 

 


[8]白宁, 张彦敏,宋克兴,等. 热处理对Cu-0.33Cr-0.06Zr 合金导电率与硬度的影响
[J]. 金属热处理,2015,40(1): 103-106. 

 

Bai N,Zhang Y M,Song K X,et al. Influence of aging on conductivity and hardness of Cu-0.33Cr-0.06Zr alloy
[J]. Heat Treatment of Metals,2015,40(1): 103-106.

 


[9]Kulczyk M,Pachla W,Godek J,et al. Improved compromise between the electrical conductivity and hardness of the thermo-mechanically treated Cu-Cr-Zr alloy
[J]. Materials Science and Engineering A,2018,724: 45-52. 

 


[10]袁继慧, 陈清香,陈辉明,等. 冷变形对Cu-Cr-Ti合金性能和组织的影响及其织构转变
[J]. 塑性工程学报,2019,26(4): 164-170. 

 

Yuan J H,Chen Q X,Chen H M,et al. Effect of cold deformation on the properties and microstructure of Cu-Cr-Ti alloy and its texture transformation
[J].Journal of Plasticity Engineering,2019,26(4): 164-170.

 


[11]赵凡, 刘祖铭,吕学谦,等. 粉末冶金Cu-Cr-Zr合金的形变热处理组织及性能
[J]. 粉末冶金材料科学与工程,2019,24(4): 385-390. 

 

Zhao F,Liu Z M,Lyu X Q,et al. Microstructure and properties of powder metallurgy Cu-Cr-Zr alloy by deformation heat treatment
[J]. Powder Metallurgy Materials Science and Engineering,2019,24(4): 385-390.

 


[12]Sun X L,Jie J C,Wang P F,et al. Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu-Cr alloys
[J]. Materials Science and Engineering A,2019,740/741(7): 165-173. 

 


[13]梁新邦. GB/T 228—2002实施要点
[J]. 理化检验:物理分册, 2004,(1): 45-48.

 

Liang X B. Implementation main points of China national standard GB/T 228—2002
[J]. Physical and Chemical Testing:Physical Volume, 2004,(1): 45-48.

 


[14]阎璐, 杨帅, 吴春勇,等. 单步冷变形对纯铜轴瓦组织和性能的影响
[J]. 金属热处理, 2015, 40(1): 135-139.

 

Yan L, Yang S, Wu C Y, et al. Effect of one-step cold deformation on microstructure and properties of copper bearing bush
[J]. Heat Treatment of Metals, 2015, 40(1): 135-139.

 


[15]Chenna K S,Karthick N K,Sudarshan R S,et al. High strength,utilizable ductility and electrical conductivity in cold rolled sheets of Cu-Cr-Zr-Ti alloy
[J]. Journal of Materials Engineering & Performance,2018,27(2): 787-793. 

 


[16]Liu J,Wang X H,Chen J,et al. The effect of cold rolling on age hardening of Cu-3Ti-3Ni-0.5Si alloy
[J]. Journal of Alloys and Compounds,2019,797: 370-379. 

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9