网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
航空航天复杂构件的精密塑性体积成形技术
英文标题:recision plastic volume forming technology for aerospace complex components
作者:宗影影 王琪伟 袁林 徐文臣 单德彬 
单位:哈尔滨工业大学 金属精密热加工国家级重点实验室 
关键词:航空航天复杂构件 精密塑性体积成形 等温锻造 局部加载 多向模锻 
分类号:TG316
出版年,卷(期):页码:2021,46(9):1-15
摘要:

 综述了航空航天复杂构件的等温锻造、局部加载和多向模锻3种精密塑性体积成形技术。对等温锻造技术,重点介绍了其应用范围与3个主要的研究方向(坯料设计、工艺参数设计与模具结构设计);对局部加载技术,着重论述了其变形特点以及不连续局部加载的3种实施方式(简单冲头式、垫板式和分模式),并结合实例介绍了连续局部加载的3种成形方法(内壁带筋的薄壁圆环径向包络成形、涡轮盘辊轧成形和网格筋板构件辊轧成形);对多向模锻技术,简要阐述了典型三通件多向模锻成形的研究现状,以及多向模锻技术的应用情况。最后,对这些技术未来朝着尺寸更大、形状更复杂、更难变形材料、更高成形精度以及更多领域的方向发展进行了展望。

 Three kinds of precision plastic volume forming technologies, isothermal forging, local loading and multi-directional die forging of aerospace complex components were reviewed, and for the isothermal forging technology, its application scope and three main research directions (blank design, process parameters design and mold structure design) were emphatically introduced. Then, for the local loading technology, the deformation characteristics and three implementation methods of discontinuous local loading (simple punch type, backup plate type and separate die type) were emphatically discussed, and three forming methods of continuous local loading (radial envelope forming of thin-walled cylindrical ring with ribs on inner wall, rolling of turbine disk and rolling of grid stiffened plate components) were introduced by combining with examples. Furthermore, for the multi-direction die forging technology, the research status of multi-directional die forging of typical tee part and the application situation of multi-directional die forging technology were briefly described. Finally, the future development of these technologies towards larger size, more complex shape, more difficult-to-form materials, higher forming precision and broader fields was prospected.

 
基金项目:
国家自然科学基金资助项目(51974099)
作者简介:
作者简介:宗影影(1980-),女,博士,教授 E-mail:hagongda@hit.edu.cn 通信作者:单德彬(1967-),男,博士,教授 E-mail:shandb@hit.edu.cn
参考文献:

 [1]蒋鹏,贺小毛,杨勇,等. 国内精密塑性成形技术的发展及其在工业生产中的应用[J]. 模具工业,202046(12): 20-25.


 


Jiang P, He X M, Yang Y, et al. Development of domestic precision plastic forming technology and its application in industrial production[J]. Die & Mould Industry, 2020, 46(12): 20-25.


 


[2]高峻,李淼泉. 精密锻造技术的研究进展与发展趋势[J]. 精密成形工程,20157(6): 37-4380.


 


Gao J, Li M Q. Research progress and development trend of the precision forging technology. [J]. Journal of Netshape Forming Engineering, 2015, 7(6): 37-4380.


 


[3]李勇,李东升,李小强. 大型复杂壁板构件塑性成形技术研究与应用进展[J]. 航空制造技术,2020 63(21): 24-3341.


 


Li Y, Li D S, Li X Q. A review of plastic forming technologies and applications for large and complex-shaped panels[J]. Aeronautical Manufacturing Technology, 2020, 63(21): 24-3341.


 


[4]张士宏,程明,宋鸿武,等. 航空航天复杂曲面构件精密成形技术的研究进展[J]. 南京航空航天大学学报,202052(1): 1-11.


 


Zhang S H, Cheng M, Song H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1):1-11.


 


[5]吴捍疆,张丰收,燕根鹏. 航空发动机叶片精锻成形可靠性技术[J].锻压技术,201944(5): 1-5.


 


Wu H J, Zhang F S, Yan G P. Reliability technology of precision forging for aero-engine blade[J]. Forging & Stamping Technology, 2019, 44(5): 1-5.


 


[6]王乐安. 民用飞机大型锻件的锻压技术[J]. 材料工程,1992(5):6-8.


 


Wang L A. Forging technology of large-size forgings for commercial aircraft[J]. Journal of Materials Engineering, 1992(5): 6-8.


 


[7]张利军,常辉,薛祥义. 等温锻造技术及其在航空工业中的应用[J]. 热加工工艺,201039(21): 21-24.


 


Zhang L JChang HXue X Y. Isothermal forging technology and its application in aviation industry[J]. Hot Working Technology, 2010, 39(21): 21-24.


 


[8]Somani M C, Sundaresan R, Kaibyshev O A, et al. Deformation processing in superplasticity regime-production of aircraft engine compressor discs out of titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1-2): 134-139.


 


[9]Park J J, Hwang H S. Preform design for precision forging of an asymmetric rib-web type component[J]. Journal of Materials Processing Technology, 2007, 187-188(1): 595-599.


 


[10]郭晓琳,东栋,苏胜伟,等. 5A06铝合金基座热挤压精密成形工艺研究[J]. 航天制造技术,2019(1): 27-31.


 


Guo X L, Dong D, Su S W, et al. Hot extrusion precision forming research on 5A06 aluminum alloy pedestal [J]. Aerospace Manufacturing Technology, 2019, (1): 27-31.


 


[11]徐文臣,郭晓琳,单德彬,等. 一种铝合金筋板类矩形锻件的精密成形方法[P].中国: CN109570418A, 2019-04-05.


 


Xu W C, Guo X L, Shan D B, et al. A precision forming method of aluminum alloy rib-web rectangular forgings[P]. China: CN109570418A, 2019-04-05.


 


[12]Zhang Y Q, Jiang S Y, Zhao Y N, et al. Isothermal precision forging of complex-shape rotating disk of aluminum alloy based on processing map and digitized technology[J]. Materials Science & Engineering: A, 2013, 580: 294-304.


 


[13]Zhang Y Q, Jiang S Y, Zhao Y N, et al. Isothermal precision forging of aluminum alloy ring seats with different preforms using FEM and experimental investigation[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(9-12): 1693-1703.


 


[14]Gao P F, Yan X G, Fei M Y, et al. Formation mechanisms and rules of typical types of folding defects during die forging[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1-4): 1603-1612.


 


[15]王冠. 高强韧镁合金转接头精密成形及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学,2009.


 


Wang G. Precision Forming of High Strength-Toughness Magnesium Adapter and Microstructural Property[D]. Harbin: Harbin Institute of Technology, 2009.


 


[16]李峰,林俊峰,初冠南. 铝合金锻件成形工艺及三维有限元分析[J]. 中国有色金属学报,200919(7): 1197-1202.


 


Li F, Lin J F, Chu G N. 3D finite element analysis and forging process of aluminum alloy forging parts[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(7): 1197-1202.


 


[17]Jiang H Y, Cheng F. Experimental study on isothermal forging technology for a complex-shaped titanium alloy wing[J]. Rare Metal Materials & Engineering, 2017, 46(11): 3182-3187.


 


[18]郑有想. 基于正交试验的铝合金筋板类锻件成形工艺参数多目标优化[J]. 热加工工艺,201544(9): 168-172.


 


Zheng Y X. Multi-objective optimization of process parameters of aluminum alloy rib-web forgings based on orthogonal experiment[J]. Hot Working Technology, 2015, 44(9): 168-172.


 


[19]Zhang Y Q, Shan D B, Xu F C. Flow lines control of disk structure with complex shape in isothermal precision forging[J]. Journal of Materials Processing Technology, 2009, 209(2): 745-753.


 


[20]Zhao J H, Deng Y L, Zhang J, et al. Effect of forging speed on the formability, microstructure and mechanical properties of isothermal precision forged of Al-Zn-Mg-Cu alloy[J]. Materials Science & Engineering: A, 2019, 767: 138366.


 


[21]王以华. 锻模设计技术及实例[M]. 北京: 机械工业出版社, 2009.


 


Wang Y H. Technology and Examples of Forging Die Design[M]. Beijing: China Machine Press, 2009.


 


[22]王以华,袁秦峰,梁必成. 锻造最新前沿技术研究综述()[J]. 锻造与冲压,2021(1): 20222426.


 


Wang Y H, Yuan Q F, Liang B C. Review of the latest cutting-edge forging technology(1/2)[J]. Forging & Metalforming, 2021, (1): 20222426.


 


[23]王琪伟. 5A06铝合金环形连接框精密锻造工艺研究[D]. 哈尔滨: 哈尔滨工业大学,2020.


 


Wang Q W. Study on Precision Forging Process of 5A06 Aluminum Alloy Ring Joint Frame[D]. Harbin: Harbin Institute of Technology, 2020.


 


[24]周世杰. 7A04铝合金复杂接头类构件等温精密成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学,2010.


 


Zhou S J. Research on Isothermal Precision Forming Process of 7A04 Aluminum Alloy Complex Connector Parts[D]. Harbin: Harbin Institute of Technology, 2010.


 


[25]李旭斌. 高强铝合金复杂筋板构件整体成形技术研究[D]. 太原: 中北大学,2015.


 


Li X B. Study on Monolithic Forming Technology for Aldural Complex Rib-web Component[D]. Taiyuan: North University of China, 2015.


 


[26]李旭斌,张治民,王强,等. 一种高强复杂铝合金异形外六边座钣挤压局部加载模具[P]. 中国: CN103521544A, 2014-01-22.


 


Li X B, Zhang Z M, Wang Q, et al. A local loading die for extrusion of high strength complex aluminum alloy special-shaped outer hexagon base plate[P]. China: CN103521544A, 2014-01-22.


 


[27]Politis D J, Politis N J, Lin J G, et al. A review of force reduction methods in precision forging axisymmetric shapes[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5): 2809-2833.


 


[28]史科. TC11钛合金叶轮类复杂构件等温成形规律与数值模拟[D]. 哈尔滨: 哈尔滨工业大学,2008.


 


Shi K. The Isothermal Forming Law and Numerical Simulation of TC11 Alloy Impeller Component with Complex Shape[D]. Harbin: Harbin Institute of Technology, 2008.


 


[29]Zhang D W, Fan X G. Review on intermittent local loading forming of large-size complicated component: Deformation characteristics[J]. International Journal of Advanced Manufacturing Technology, 2018, 99: 1427-1448.


 


[30]Zhang D W, Yang H, Sun Z C. Analysis of local loading forming for titanium-alloy T-shaped components using slab method[J]. Journal of Materials Processing Technology, 2010, 210(2): 258-266.


 


[31]Gao P F, Yang H, Fan X G. Quantitative analysis of the material flow in transitional region during isothermal local loading forming of Ti-alloy rib-web component[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(9-12): 1339-1347.


 


[32]Gao P F, Yang H, Fan X G, et al. Forming defects control in transitional region during isothermal local loading of Ti-alloy rib-web component[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8): 857-868.


 


[33]Gao P F, Yang H, Fan X G, et al. Forming limit of local loading forming of Ti-alloy large-scale rib-web components considering defects in the transitional region[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(5-8): 1015-1026.


 


[34]Gao P F, Li X D, Yang H, et al. Influence of die parameters on the deformation inhomogeneity of transitional region during local loading forming of Ti-alloy rib-web component[J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 2109-2119.


 


[35]Fan X G, Yang H, Sun Z C, et al. Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming[J]. Materials Science & Engineering: A, 2010, 527(21-22): 5391-5399.


 


[36]邓文卫,易幼平,湛利华,等. 大型铝合金航空模锻件局部加载成形工艺研究[J]. 热加工工艺,2011,(11): 29-31.


 


Deng W W, Yi Y P, Zhan L H, et al. Research on local loading process of large Al-alloy air die forgings[J]. Hot Working Technology, 2011,(11): 29-31.


 


[37]Shan D B, Xu W C, Si C H, et al. Research on local loading method for an aluminum-alloy hatch with cross ribs and thin webs[J]. Journal of Materials Processing Technology, 2007, 187: 480-485.


 


[38]吕炎,徐福昌,薛克敏,等. 镁合金上机匣等温精锻工艺的研究[J]. 哈尔滨工业大学学报,200032(4): 127-129.


 


Lyu Y, Xu F C, Xue K M, et al. Isothermal precision forming of magnesium alloy upper housing[J]. Journal of Harbin Institute of Technology, 2000, 32(4): 127-129.


 


[39]Han X H, Hua L, Peng L, et al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs[J]. Journal of Materials Processing Technology, 2020, 286: 116836.


 


[40]Bewlay B P, Gigliotti M, Hardwicke C U, et al. Net-shape manufacturing of aircraft engine disks by roll forming and hot die forging[J]. Journal of Materials Processing Technology, 2003, 135(2-3): 324-329.


 


[41]胡金,温彤,张梦,等. 基于响应面法的筋肋板辊轧成形工艺参数优化[J]. 锻压技术,201944(8): 35-40.


 


Hu J, Wen T, Zhang M, et al. Optimization on rolling process parameters for rib stiffened plates based on respond surface method[J]. Forging & Stamping Technology, 2019, 44(8): 35-40.


 


[42]林峰,张磊,孙富,等. 多向模锻制造技术及其装备研制[J]. 机械工程学报,201248(18): 13-20.


 


Lin F, Zhang L, Sun F, et al. Multi-ram forge process and its equipment development[J]. Journal of Mechanical Engineering, 2012, 48(18): 13-20.


 


[43]任运来,聂绍珉,苗丽雅. 多向模锻技术的发展及应用[J]. 重型机械,2014(4): 1-8.


 


Ren Y L, Nie S M, Miao L Y. Development and application of multi-ram forging technology[J]. Heavy Machinery, 2014, (4): 1-8.


 


[44]刘航,李伟,张镜斌. 7075铝合金三通阀多向加载成形过程模拟[J]. 热加工工艺,202150(9): 101-104.


 


Liu H, Li W, Zhang J B. Simulation of multi-directional loading forming process of 7075 aluminum alloy tee valve[J]. Hot Working Technology, 2021, 50(9): 101-104.


 


[45]张红颖,刘颖,刘晓芹. 等径三通多向加载挤压成形模拟研究[J]. 大型铸锻件,2013(3): 23-27.


 


Zhang H Y, Liu Y, Liu X Q. Simulation research on extrusion forming with multi-direction load of equal-diameter tee joint[J]. Heavy Casting & Forging, 2013, (3): 23-27.


 


[46]Sun Z C, Cao J, Wu H L, et al. Inhomogeneous deformation law in forming of multi-cavity parts under complex loading path[J]. Journal of Materials Processing Technology, 2017, 254: 179-192.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9