[1]丁海, 李承斌. 模具的失效分析及热处理工艺的改进[J]. 热加工工艺, 2013, 42(6): 208-209.
Ding H, Li C B. Improvement of heat treatment process and failure analysis of die[J]. Hot Working Technology, 2013, 42(6): 208-209.
[2]赵峰, 张国政. 热处理工艺在模具制造过程中的应用[J]. 热加工工艺, 2013, 42(2): 172-175.
Zhao F, Zhang G Z. Application of heat treatment process on die manufacturing[J]. Hot Working Technology, 2013, 42(2): 172-175.
[3]毕彦,邵振江,段文利,等. C12MoV模具钢激光熔覆复合超硬层的耐磨性研究[J]. 锻压技术, 2019, 44(8): 146-149.
Bi Y, Shao Z J, Duan W L, et al. Study on wear resistance of laser cladding composite superhard layer of C12MoV die steel[J]. Forging & Stamping Technology, 2019, 44(8): 146-149.
[4]吉国强,邓炽恒,于丽娟. 3Cr2W8V钢热作模具开裂原因分析[J]. 锻压技术, 2019, 44(8): 150-157.
Ji G Q, Deng C H, Yu L J. Analysis on cracking reasons of hot-working die for 3Cr2W8V steel[J]. Forging & Stamping Technology, 2019, 44(8): 150-157.
[5]杨光龙, 黄家军,黄玉芳,等. 3Cr2W8V钢热挤压模具的失效形式分析及对策研究[J]. 机械制造与自动化, 2020, 49(4): 54-56.
Yang G L, Huang J J, Huang Y F, et al. Failure analysis and countermeasure research on 3Cr2W8V steel hot extrusion die[J]. Machine Building & Automation, 2020, 49(4): 54-56.
[6]吕泽平. 热处理工艺对模具寿命的影响[J]. 冶金与材料, 2021, 41(1): 98-99.
Lyu Z P. A research on effect of heat treatment on the mould longevity[J]. Metallurgical & Material, 2021, 41(1): 98-99.
[7]蒋雪军. 齿轮模具用5CrNiMo钢的热处理工艺[J]. 山东冶金, 2020, 42(2): 76-77.
Jiang X J. Heat treatment of 5CrNiMo steel die of gear[J]. Shandong Metallurgy, 2020, 42(2): 76-77.
[8]徐胜利, 苗高蕾. 冷挤压模具失效分析与提高模具寿命途径[J]. 锻压装备与制造技术, 2011, 46(3): 71-73.
Xu S L, Miao G L. Failure analysis of cold extrusion die life and improvement solution[J]. China Metalforming Equipment Manufacturing Technology, 2011, 46(3): 71-73.
[9]吴光治. 热处理节能减排与清洁生产若干问题的探讨[J]. 机械制造与自动化, 2010, 39(1): 12-14.
Wu G Z. Exploring energysaving emission reduction and clean production in heat treatment[J]. Machine Building Automation, 2010, 39(1): 12-14.
[10]张志贤. 热处理的清洁生产[J]. 金属加工:热加工, 2014,(15): 58.
Zhang Z X. Clean production of heat treatment[J]. MW Metal Forming, 2014,(15): 58.
[11]胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报:社会科学版, 2021, 21(3): 1-15.
Hu A G. China′s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology:Social Sciences Edition, 2021, 21(3): 1-15.
[12]许玲萍,刘希豪,邵东强,等. 汽车覆盖件冷冲压模具激光熔覆强化技术[J]. 锻压技术, 2019, 44(2): 135-140.
Xu L P, Liu X H, Shao D Q, et al. Laser cladding strengthening technology of cold stamping dies for automobile panel[J]. Forging & Stamping Technology, 2019, 44(2): 135-140.
[13]元莎,白玉冰,周乐育,等. 热处理工艺参数对Cr8冷作模具钢组织和性能的影响[J]. 锻压技术, 2020, 45(1): 168-172.
Yuan S, Bai Y B, Zhou L Y, et al. Influence of heat treatment parameters on microstructure and property of Cr8 cold working die steel[J]. Forging & Stamping Technology, 2020, 45(1): 168-172.
[14]王荣滨. 模具真空热处理的推广应用[J]. 模具制造, 2008,(7): 80-84.
Wang R B. Application of die and mold vacuum heat treatment[J]. Die & Mould Manufacture, 2008,(7): 80-84.
[15]黄德发, 陈雄清. 关于推广真空热处理技术若干问题及对策[J]. 热处理技术与装备, 2019, 40(6): 56-60.
Huang D F, Chen X Q. Some problems and countermeasures on promoting vacuum heat treatment technology[J]. Heat Treatment Technology and Equipment, 2019, 40(6): 56-60.
[16]赵昌胜. 精密复杂塑料模具钢的应用及热处理[J]. 模具制造, 2011, 11(4): 83-86.
Zhao C S. Application and heat treatment of complex precision plastic mold steels[J]. Die & Mould Manufacture, 2011, 11(4): 83-86.
[17]王琦, 姜卓,沈正元,等. 模具钢真空热处理工艺的改进[J]. 热处理, 2012, 27(1): 34-37.
Wang Q, Jiang Z, Shen Z Y, et al. Improvement on vacuum heat treatment process for die steel[J]. Heat Treatment, 2012, 27(1): 34-37.
[18]马炳洲. 热挤压工模具真空热处理缺陷及预防对策[J]. 铝加工, 2008,(2): 39-41.
Ma B Z. Vacuum heat treatment defaults of thermal extrusion die and its preventive solutions[J]. Aluminium Fabrication, 2008,(2): 39-41.
[19]王丽莲. H13钢模具真空控时急冷热处理工艺研究[J]. 热处理, 2007,(3): 45-49.
Wang L L. Investigation on timecontrolled sudden cooling vacuum heat treatment process for H13 steel dies[J]. Heat Treatment, 2007,(3): 45-49.
[20]苏立武. DIEVAR模具钢的真空热处理工艺[J]. 热处理, 2017, 32,(1): 36-39.
Su L W. Vacuum heat treatment process for the DIEVAR die steel[J]. Heat Treatment, 2017, 32,(1): 36-39.
[21]张雅, 吕韦. 浅谈真空热处理表面光亮的质量控制[J]. 四川有色金属, 2020,3(3): 53-55.
Zhang Y, Lyu W. Quality control of surface brightness in vacuum teat treatment[J]. Sichuan Nonferrous Metals, 2020,3(3): 53-55.
[22]皮华春, 赵中里,薛勇杰. 热作模具激光表面淬火工艺与性能分析[J]. 沈阳大学学报:自然科学版, 2020, 32(4): 281-284.
Pi H C, Zhao Z L, Xue Y J. Laser surface quenching process and performance analysis of hot work die[J]. Journal of Shenyang University:Natural Science, 2020, 32(4): 281-284.
[23]杨柳青, 丁阳喜,付伟,等. Cr12MoV钢宽带激光淬火试验研究[J]. 金属热处理, 2006,(6): 49-51.
Yang L Q, Ding Y X, Fu W, et al. Experimental study on wideband laser quenching of Cr12MoV steel[J]. Heat Treatment of Metals, 2006,(6): 49-51.
[24]丁阳喜. Cr12MoV钢宽带激光淬火组织回火稳定性研究[J]. 热加工工艺, 2007, 36(18): 62-63.
Ding Y X. Study on microstructure tempering stability of Cr12MoV steel wideband laser quenching[J]. Hot Working Technology, 2007, 36(18): 62-63.
[25]李云涛, 尹博,孙文强,等. 激光功率对Cr12MoV钢激光淬火强化的影响[J]. 模具工业, 2013, 39(4): 73-76.
Li Y T, Yin B, Sun W Q, et al. Effects of laser power on laser quenching of Cr12MoV steel[J]. Die & Mould Industry, 2013, 39(4): 73-76.
[26]周健, 李立君. H13模具钢激光相变强韧化处理研究[J]. 矿冶工程, 2008, 28(2): 100-103.
Zhou J, Li L J. Researches on hardening and toughing treatment of H13 die steel by laser scanning phasechange[J]. Mining and Metallurgical Engineering, 2008, 28(2): 100-103.
[27]张亚龙, 徐新成,杨向东,等. 激光表面淬火对H13钢显微组织及性能的影响[J]. 热加工工艺, 2014, 43(8): 153-155.
Zhang Y L, Xu X C, Yang X D, et al. Effects of laser surface quenching on microstructure and properties of H13 steel[J]. Hot Working Technology, 2014, 43(8): 153-155.
[28]谢祖华, 李云妹. PVD表面改性技术在模具上的应用[J]. 机电技术, 2011, 34(6): 87-90.
Xie Z H, Li Y M. Application of PVD surface modification technology on mold[J]. Mechanical & Electrical Technology, 2011, 34(6): 87-90.
[29]王妮莎, 刘琼. PVD涂层在精冲模具上的应用综述[J]. 中国机械, 2015,(8): 111-112.
Wang N S, Liu Q. Review of the application of PVD coating on fine stamping die[J]. Machine China, 2015, (8): 111-112.
[30]张而耕, 孔令超. 模具PVD涂层值得关注的几个问题[J]. 表面技术, 2010, 39(4): 110-112.
Zhang E G, Kong L C. Several notable problems from mould with PVD coating[J]. Surface Technology, 2010, 39(4): 110-112.
[31]胡树兵, 张明,黎美恒,等. TiN涂层在模具上的应用[J]. 金属加工:热加工, 2003, (11): 27-29.
Hu S B, Zhang M, Li M H, et al. Application of TiN coating on mould[J]. MW Metal Forming, 2003, (11): 27-29.
[32]曾霞文, 谭彦显,陈超,等. 气相沉积技术在提高塑料模具寿命中的应用[J]. 湖南工业职业技术学院学报, 2008, 8(6): 11-13.
Zeng X W, Tan Y X, Chen C, et al. The application of vapor deposition on the plastic mould[J]. Journal of Hunan Industry Polytechnic, 2008, 8(6): 11-13.
[33]Gallo S C, Figueroa C A, Baumvol I J R. Premature thermal fatigue failure of aluminium injection dies with duplex surface treatment[J]. Materials Science and Engineering: A, 2010, 527(29-30): 7764-7769.
[34]吴晓春, 杨浩鹏. 模具钢表面处理的研究进展[J]. 模具工业, 2013, 39(9): 1-6.
Wu X C, Yang H P. Research process in surface treatment of die steel[J]. Die & Mould Industry, 2013, 39(9): 1-6.
[35]张双科, 吴晓春,闵永安,等. Cr12MoV钢等离子S、N、C复合共渗层组织与性能探讨[J]. 上海金属, 2002, 24(5): 7-10.
Zhang S K, Wu X C, Min Y A, et al. Study on the property and microstructure of composite surface layer of Cr12MoV steel infiltrated by SNC plasma[J]. Shanghai Metals, 2002, 24(5): 7-10.
[36]张双科, 吴晓春. Cr12MoV钢等离子SNC共渗摩擦磨损特性研究[J]. 金属热处理, 2003, 28(4): 24-28.
Zhang S K, Wu X C. FrictionWear characteristics of the Cr12MoV steel after plasma sulphonitrocarburizing[J]. Heat Treatment of Metals, 2003, 28(4): 24-28.
[37]赵洋, 周林,张涛,等. PVD涂层在汽车模具上的应用及结合力改善研究[J]. 重庆理工大学学报:自然科学, 2019, 33(3): 155-160.
Zhao Y, Zhou L, Zhang T, et al. The research of application and improvement of binding force of PVD coating on automobile die[J]. Journal of Chongqing University of Technology:Natural Science, 2019, 33(3): 155-160.
[38]马锋刚, 雷海娇. H13钢热锻模具的真空热处理[J]. 热加工工艺, 2010, 39(24): 222-223.
Ma F G, Lei H J. Vacuum heattreatment for hotforge die steel H13[J]. Hot Working Technology, 2010, 39(24): 222-223.
[39]张庆力, 史强,杨亚洲. 基于数值模拟的H13多道激光表面淬火工艺参数与淬火区域特性关系的研究[J]. 应用激光, 2018, 38(2): 286-294.
Zhang Q L, Shi Q, Yang Y Z. Study on relationship between H13 multichannel laser surface quenching process parameters and quenching zone characteristics based on numercial simulation[J]. Applied Laser, 2018, 38(2): 286-294.
[40]Hiller G. Advantages of low pressure carburising and high pressure gas quenching technology in manufacturing[J]. International Heat Treatment and Surface Engineering, 2014, 8(1): 35-41.
[41]Busch G. Low pressure carburising and high pressure gas quenching[J]. International Heat Treatment and Surface Engineering, 2014, 8(1): 29-34.
[42]张建国. 真空热处理的发展与进步[J]. 金属热处理, 1993,(7): 53-54.
Zhang J G. Development and progress of vacuum heat treatment[J]. Heat Treatment of Metals, 1993,(7): 53-54.
[43]陈旭阳, 王园杰,尹承锟,等. 细长轴类零件的真空高压气淬工艺[J]. 金属热处理, 2019, 44(3): 188-191.
Chen X Y, Wang Y J, Yin C K, et al. High pressure gas quenching process for slender shaft[J]. Heat Treatment of Metals, 2019, 44(3): 188-191.
[44]丛培武, 周有臣,陆文林,等. 一种适用于20 bar高压气淬的真空炉风冷系统[P]. 中国:CN208308910U,2019-01-01.
Cong P W, Zhou Y C, Lu W L, et al. A kind of vacuum drying oven air cooling system suitable for 20 bar high pressure gas quenching[P]. China: CN208308910U, 2019-01-01.
[45]Baumann M, Luft A. Beam shaping laser optic[P]. Germany: DE102018211409.9,2018-07-10.
[46]SchulzHarder J, Meyer A, Krause V, et al. Diode laser array and method for manufacturing such an array[P]. United States of America: US8130807B2,2012-03-06.
[47]Walter S. Method and device for laser hardening of workpieces by means of a plurality of spacedapart individual laser beams[P]. Germany: DE102018100549.0,2018-01-11.
[48]刘彬, 许立铭, 刘宏胜, 等. Laserline激光发生器在KUKA机器人系统中的应用[J]. 上海交通大学学报, 2016, 50(S1): 14-18.
Liu B, Xu L M, Liu H S, et al. Application of Laserline laser generator in KUKA robot system[J]. Journal of Shanghai Jiaotong University,2016, 50(S1): 14-18.
[49]闵大勇, 王爱华,熊志红,等. 模具半导体激光强韧化工艺研究[J]. 激光技术, 2012, 36(3): 364-367.
Min D Y, Wang A H, Xiong Z H, et al. Process research of diode laser surface hardening for dies[J]. Laser Technology, 2012, 36(3): 364-367.
[50]秦丽蓬. 汽车拉延模具应力计算和磨损预测及激光淬火工艺优化[D]. 长沙:湖南大学, 2013.
Qin L P. Calculation of Instamping Surface Stresses of an Automobile Panel Die and Optimization of Laser Hardening Process[D]. Changsha: Hunan University, 2013.
[51]郭怡晖. 球墨铸铁QT6003激光相变硬化数值模拟与试验研究[D]. 长沙:湖南大学, 2010.
Guo Y H. Numerical Simulation and Experimental Study on the Laser Transformation Hardening of Ductile Cast Iron QT6003[D]. Changsha: Hunan University, 2010.
[52]Arndt M. Nanolayer coating for high performance tools[P]. The United States of America: US9200371B2,2015-12-01.
[53]Massler O, Eberle H, Gschwend P. Plasma booster for plasma treatment installation[P]. The United States of America: US20100326356A1,2010-12-30.
[54]Dosbaeva G K, Veldhuis S C, Yamamoto K, et al. Oxide scales formation in nanocrystalline TiAlCrSiYN PVD coatings at elevated temperature[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 133-141.
[55]Yuan J, Yamamoto K, Covelli D, et al. Tribofilms control in adaptive TiAlCrSiYN/TiAlCrN multilayer PVD coating by accelerating the initial machining conditions[J]. Surface and Coatings Technology, 2016, 294: 54-61.
[56]刘坤, 王展威,李昌龙,等. 一种多级复合高真空干泵[P]. 中国:CN108105121A, 2018-06-01.
Liu K, Wang Z W, Li C L, et al. A kind of multistage composite high vacuum dry pump[P]. China: CN108105121A, 2018-06-01.
[57]李昌龙, 王光玉,刘坤,等. 干式真空泵单元及具有该干式真空泵单元的干式真空泵[P]. 中国:CN102828952A, 2012-12-19.
Li C L, Wang G Y, Liu K, et al, Dry type vacuum pump unit and a dry type vacuum pump with same[P]. China: CN102828952A, 2012-12-19.
[58]Bobzin K, Lugscheider E, Maes M, et al. Alumina PVD tool coatings for the use in semi solid metal forming of steel[J]. Solid State Phenomena, 2006, 116-117: 704-707.
[59]吴庆文. H13钢表面PPD+PVD复合处理及组织性能研究[D]. 吉林:吉林大学, 2019.
Wu Q W. Study on Microstructures and Properties of PPD+PVD Compound Treatment on H13 Steel[D]. Jilin: Jilin University, 2019.
[60]陈利, 李佳,吴明晶,等. 含CrAlVN层和CrAlSiN层的复合涂层刀具及其制备方法[P]. 中国:CN104385751B, 2016-07-06.
Chen L, Li J, Wu M J, et al, Composite coating layer cutter containing CrAlVN layer and CrAlSiN layer and preparation method thereof[P]. China: CN104385751B, 2016-07-06.
[61]李俏, 徐跃明,董小虹,等. 清洁节能热处理装备技术要求和评价体系[J]. 金属热处理, 2014, 39(12): 175-181.
Li Q, Xu Y M, Dong X H, et al. Development of technique requirement and evaluation system of cleaning and energy saving heat treatment equipment[J]. Heat Treatment of Metals, 2014, 39(12): 175-181.
|