[1]李兴无, 沙爱学, 张旺峰, 等. TA15合金及其在飞机结构中的应用前景[J]. 钛工业进展, 2003,20(4-5): 90-94.
Li X W, Sha A X, Zhang W F, et al. TA15 titanium alloy and its applying prospects on airframe[J]. Titanium Industry Progress, 2003,20(4-5): 90-94.
[2]Zhang T, Liu Y, Sanders D G, et al. Development of fine-grain size titanium 6Al-4V alloy sheet material for low temperature superplastic forming[J]. Materials Science and Engineering: A, 2014,608: 265-272.
[3]Velay V, Matsumoto H, Vidal V, et al. Behavior modeling and microstructural evolutions of Ti-6Al-4V alloy under hot forming conditions[J]. International Journal of Mechanical Sciences, 2016,108-109: 1-13.
[4]Wu Y, Liu G, Wang K, et al. Loading path and microstructure study of Ti-3Al-2.5V tubular components within hot gas forming at 800 ℃[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(5-8): 1823-1833.
[5]Kopec M, Wang K, Politis D J, et al. Formability and microstructure evolution mechanisms of Ti6Al4V alloy during a novel hot stamping process[J]. Materials Science and Engineering: A,2018, 719: 72-81.
[6]Souza P M, Beladi H, Singh R, et al. Constitutive analysis of hot deformation behavior of a Ti6Al4V alloy using physical based model[J]. Materials Science and Engineering: A, 2015,648: 265-273.
[7]刘海军, 张治民, 徐健, 等. 等离子烧结态TC4钛合金热变形行为及本构模型研究[J]. 塑性工程学报, 2019,26(6): 263-270.
Liu H J,Zhang Z M,Xu J,et al. Study on hot deformation behavior and constitutive model of SPSed TC4 titanium alloy[J].Journal of Plasticity Engineering, 2019, 26 (6): 263-270.
[8]周盛武, 董洪波, 姜智勇, 等. TB17钛合金热压缩流变应力分析及本构方程[J]. 塑性工程学报, 2018,25(1): 218-223.
Zhou S W,Dong H B,Jiang Z Y,et al. Flow stress analysis and constitutive equation of TB17 titanium alloy during hot compression[J]. Journal of Plasticity Engineering,2018,25 (1): 218-223.
[9]刘建军, 王克鲁, 鲁世强, 等. Ti-25Nb合金的热变形行为及本构关系模型[J]. 塑性工程学报, 2020,27(6): 148-154.
Liu J J,Wang K L,Lu S Q,et al. Hot deformation behavior and constitutive relation model of Ti-25Nb alloy[J]. Journal of Plasticity Engineering,2020,27 (6): 148-154.
[10]Tang X, Wang B, Huo Y, et al. Unified modeling of flow behavior and microstructure evolution in hot forming of a Ni-based superalloy[J]. Materials Science and Engineering: A, 2016,662: 54-64.
[11]Yang L,Wang B, Liu G, et al. Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets[J]. Materials & Design, 2015,85: 135-148.
[12]Gao P F,Guo J, Zhan M,et al. Microstructure and damage based constitutive modelling of hot deformation of titanium alloys[J]. Journal of Alloys and Compounds, 2020,831:154851.
[13]李鸿江, 于洋, 宋晓云,等. 新型Ti-6554钛合金热变形行为及热加工图[J]. 稀有金属, 2020, 44(5): 462-468.
Li H J, Yu Y, Song X Y, et al. Thermal deformation behavior and processing map of a new type of Ti-6554 alloy[J]. Chines Journal of Rare Metals,2020,44(5):462-468.
[14]石尚, 董洪波, 姜智勇, 等. 基于BP神经网络的TB17钛合金热变形行为研究[J]. 特种铸造及有色合金, 2019,39(4): 434-438.
Shi S, Dong H B, Jiang Z Y, et al.Hot deformation behavior of TB17 titanium alloy based on BP neural network[J]. Special Casting & Nonferrous Alloys, 2019,39(4): 434-438.
[15]Neyshabur B, Bhojanapalli S, McAllester D, et al. Exploring generalization in deep learning[EB/OL]. https://arxiv.org/abs/1706.08947, 2017-06-27.
[16]Li C L, Narayana P L, Reddy N S, et al. Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network[J]. Journal of Materials Science & Technology,2019, 35(5): 907-916.
[17]Raj R. Development of a processing map for use in warm-forming and hot forming processes[J]. Metallurgical Transactions A, 1981, 12: 1089-1097.
|