网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高温合金超薄带材成形极限预测模型
英文标题:Prediction model on forming limit for ultrathin superalloy strip
作者:万敏 孔融 郑立皇 闫彬宇 孟宝 
单位:北京航空航天大学 机械工程及自动化学院 
关键词:高温合金 超薄带材 成形极限 Swift-Hill失稳准则 韧性断裂准则 M-K模型 
分类号:TG381
出版年,卷(期):页码:2021,46(9):90-98
摘要:

 为了评估不同理论模型对高温合金超薄带材成形极限的预测能力,通过胀形实验获得不同高温合金超薄带材成形极限曲线。采用SwiftHill失稳准则、多种韧性断裂准则以及MK模型,对两种高温合金超薄带材成形极限进行理论预测,并与实验结果对比。结果表明,SwiftHill失稳准则和传统韧性断裂准则的预测精度较差,不适用于高温合金超薄带材成形极限的预测。通过考虑表面粗化对成形极限的影响修正了SwiftHill模型,并将修正模型预测结果与LouHuh 2012HuChen 2017准则和MK模型预测结果进行比较,发现前3种模型对高温合金超薄带材的成形极限具有基本相同的预测精度,且均不超过10%,而MK模型的预测精度较低。为高温合金超薄带材成形极限曲线的建立提供了有效方法,具有重要的工程应用价值。

 In order to evaluate the prediction ability of different theoretical models to the forming limit of ultrathin superalloy strips, the forming limit curves of ultrathin superalloy strips were obtained by bulging experiments. Then, the forming limits of two kinds of ultrathin superalloy strips were theoretically predicted by Swift-Hill instability criterion, multiple ductile fracture criteria and M-K model, and the results were compared with the experimental results. The results show that the prediction accuracies of Swift-Hill instability criterion and traditional ductile fracture criterion are poor, which are not suitable for the prediction of forming limit of ultrathin superalloy strip. By considering the influence of surface coarsening on forming limit, the Swift-Hill model was modified, and the prediction result of the modified model was compared with the prediction results of Lou-huh 2012 criterion, Hu-Chen 2017 criterion and M-K model. It is found that the former three models have basically the same prediction accuracy for forming limit of ultrathin superalloy strip, and all of them are less than 10%, while the prediction accuracy of M-K model is lower, which provide an effective method for establishing the forming limit curve of ultrathin superalloy strip and have important engineering application value.

 

基金项目:
国家自然科学基金资助项目(51975031);中国航发集团创新基金项目(ZZCX-2018-047)
作者简介:
万敏(1962-),男,博士,教授 E-mail:mwan@buaa.edu.cn 通信作者:孟宝(1985-),男,博士,副教授 E-mail:mengbao@buaa.edu.cn
参考文献:

 [1]高林林, 苏明. 钛镍特种金属板带材的应用及技术发展[J]. 重型机械, 2007, (6): 1-5.


 


Gao L L, Su M. Application & development trend of TiNi alloy sheet strip [J]. Heavy Machinery, 2007, (6): 1-5.


 


[2]朱宇, 万敏.航空发动机薄壁W形封严环动模外压成形[J].航空学报,2015,36(7):2457-2467.


 


Zhu Y, Wan M. External pressure forming of thin walled Wshaped sealing rings in aircraft engines using movable dies [J]. Acta Aeronautica et Astronautica Sinica, 2015,36 (7): 2457-2467.


 


[3]邹正平, 刘火星,唐海龙,等.高超声速航空发动机强预冷技术研究[J].航空学报,2015,36(8):2544-2562.


 


Zou Z P, Liu H X, Tang H L, et al. Precooling technology study of hypersonic aeroengine [J]. Acta Aeronautica et Astronautica Sinica, 2015,36 (8): 2544-2562.


 


[4]吴杰锋, 陈炜,张玲,.不锈钢超薄板的力学性能及成形极限研究[J].热加工工艺,2016,45(1):127-130.


 


Wu J F, Chen W, Zhang L, et al. Study on mechanical property and forming limit of 304 stainless steel [J]. Hot Working Technology, 2016,45 (1): 127-130.


 


[5]Keeler S P. Determination of forming limits in automotive stampings[J]. SAE Transactions, 1966, 74: 1-9.


 


[6]Goodwin G M. Application of strain analysis on sheet metal forming problems in the press shop[J]. SAE Transactions, 1968, 77: 380-387.


 


[7]Nakazima K, Kikuma T, Hasuka K. Study on the formability of steel sheets[J]. Tawata Tech Rep, 1968, 264: 8517-8530.


 


[8]Marciniak Z, Kuczyński K. Limit strains in the processes of stretch-forming sheet metal[J]. International Journal of Mechanical Sciences, 1967, 9(9): 609-620.


 


[9]Swift H W. Plastic instability under plane stress[J]. Pergamon,1952,1(1):1-18.


 


[10]Hill R. On discontinuous plastic states, with special reference to localized necking in thin sheets[J]. Pergamon,1952,1(1):19-30.


 


[11]Marciniak Z, Kuczyński K. Limit strains in the processes of stretchforming sheet metal[J]. International Journal of Mechanical Sciences, 1967, 9(9): 609-620.


[12]Ozturk F, Lee D. Analysis of forming limits using ductile fracture criteria[J]. Journal of Materials Processing Technology, 2004, 147(3): 397-404.


 


[13]傅垒, 李利,刘成,等. 基于MK理论的5182铝合金汽车板成形极限预测[J]. 轻合金加工技术, 2020, 48(7): 58-62.


 


Fu L, Li L, Liu C, et al. Prediction of forming limit of 5182 aluminum alloy sheet for automobile based on MK theory[J]. Light Alloy Fabrication Technology, 2020, 48 (7): 58-62.


 


[14]余心宏, 翟妮芝,翟江波. 基于Oyane韧性断裂准则的板料成形极限预测[J]. 材料科学与工艺, 2009, 17(5): 738-740.


 


Yu X H, Zhai N Z, Zhai J B. Prediction of the forming limit of sheet metals based on Oyane ductile fracture criterion [J]. Materials Science and Technology, 2009, 17 (5): 738-740.


 


[15]董国疆, 陈志伟,赵长财,等. 基于神经网络和遗传算法的板材韧性断裂准则参数优化及成形极限预测[J]. 中国有色金属学报, 2021, 31(2): 419-432.


 


Dong G J, Chen Z W, Zhao C Cet al. Parameter optimization of ductile fracture criterion based on neural network and genetic algorithm and forming limit prediction for sheet metal[J]. The Chinese Journal of Nonferrous Metals, 2021, 31 (2): 419-432.


 


 


[16]卢立伟,盛坤,伍贤鹏,等. 镁合金挤压变形工艺的研究进展 [J]. 锻压技术,2019,44(1):1-9.


 


X Lu L WSheng KWu X Pet al. Research progress of extrusion process for magnesium alloy [J]. Forging & Stamping Technology2019, 44(1):1-9.


 


[17]Meng B, Shi J J, Zhang Y Y, et al. Feasibility evaluation of failure models for predicting forming limit of metal foils[J]. Chinese Journal of Aeronautics, 2020, 33(9): 2461-2471.


 


[18]肖纳敏, 雷宇,罗俊杰,.航空用GH625镍基高温合金带材的成形极限研究[J].精密成形工程,2021,13(1):51-60.


 


Xiao N M, Lei Y, Luo J Jet al. Formability of GH625 nickelbased superalloy strip for aviation [J]. Journal of Netshape Forming Engineering, 2021,13 (1): 51-60.


 


[19]Meng B, Fu M W, Fu C M, et al. Ductile fracture and deformation behavior in progressive microforming[J] Materials & Design, 2015, 83: 14-25.


 


[20]Cheng C, Wan M, Meng B, et al. Characterization of the microscale forming limit for metal foils considering free surface roughening and failure mechanism transformation[J]. Journal of Materials Processing Technology, 2019, 272: 111-124.


 


[21]GB/T 228.1—2010, 金属材料 拉伸试验 第1部分:室温试验方法 [S].


 


GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].


 


 


[22]GB/T 5027—2016, 金属材料薄板和薄带塑性应变比(r)的测定[S].


 


GB/T 5027—2016, Metallic materials—Sheet and strip—Determination of plastic strain ratio[S].


 


[23]GB/T 5028—2008, 金属材料薄板和薄带拉伸应变硬化指数(n)的测定[S].


 


GB/T 5028—2008, Metallic materials—Sheet and strip—Determination of tensile strain hardening exponent[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9