[1]Zhang W P, Li H H, Hu Z L, et al. Investigation on the deformation behavior and postformed microstructure/properties of AA7075T6 alloy under prehardened hot forming process[J]. Materials Science and Engineering A, 2020, 792:139749-139759.
[2]华林, 魏鹏飞,胡志力.高强轻质材料绿色智能成形技术与应用[J].中国机械工程, 2020, 31(22):2753-2762,2771.
Hua L, Wei P F, Hu Z L. Green and intelligent forming technology and its applications for high strength lightweight material[J]. China Mechanical Engineering, 2020, 31(22):2753-2762, 2771.
[3]Li H H, Hu Z L, Hua L, et al. Influence of thermal deformation parameters on the mechanical properties and microstructure evolution of 7075 aluminum alloy during hot stampingquenching process[J]. JOM, 2019, 71(12): 4778-4788.
[4]胡志力, 范新欣,华林. 高强铝合金FSW拼焊板变形规律与成形技术[J].机械工程学报,2020, 56(6):206-212.
Hu Z L, Fan X X, Hua L. Forming theory and technology of aluminum alloy FSW tailor welded blank [J]. Journal of Mechanical Engineering, 2020, 56(6):206-212.
[5]毕莹莹,祁勇. 差温轧制建筑梁用7071铝合金板材微观组织及力学性能分析 [J].锻压技术,2019,44(4):171-175.
Bi Y Y,Qi Y. Analysis on microstructure and mechanical properties of 7071 aluminum alloy plate for construction beam in differential temperature rolling [J].Forging & Stamping Technology,2019, 44(4):171-175.
[6]刘勇,耿会程,朱彬,等. 高强铝合金高效热冲压工艺研究进展[J].锻压技术,2020,45(7):1-12.
Liu Y,Geng H C,Zhu B,et al. Research progress on high efficiency hot stamping process for high strength aluminum alloy[J]. Forging & Stamping Technology,2020,45(7):1-12.
[7]马治军,陈伟业,唐鼎,等. 汽车B柱零件热冲压软区模具模面优化设计 [J].锻压技术,2019,44(4):138-144.
Ma Z J,Chen W Y,Tang D,et al. Optimization on die surface design of soft zone in hot stamping process for automobile B-pillar part [J].Forging & Stamping Technology,2019, 44(4):138-144.
[8]Du Q, Holme Da L B, Friis J, et al. Precipitation of nonspherical particles in aluminum alloys Part II: Numerical simulation and experimental characterization during aging treatment of an AlMgSi alloy[J]. Metallurgical & Materials Transactions A, 2015, 47(1):1-11.
[9]Holmedal B, Osmundsen E, Du Q. Precipitation of nonspherical particles in aluminum alloys Part I: Generalization of the KampmannWagner numerical model[J]. Metallurgical and Materials Transactions A, 2016, 47(1):581-588.
[10]Esmaeili S, Lloyd D J. Modeling of precipitation hardening in preaged AlMgSi(Cu) alloys[J]. Acta Materialia, 2005, 53(20):5257-5271.
[11]Du Q, Tang K, Marioara C D, et al. Modeling overageing in AlMgSi alloys by a multiphase CALPHADcoupled KampmannWagner Numerical model[J]. Acta Materialia, 2017, 122:178-186.
[12]唐健江,王嘉,刘嘉乐,等. 变形时效对6061铝合金板材的组织和力学性能的影响[J].锻压技术,2019,44(7):165-169.
Tang J J,Wang J,Liu J L,et al. Influence of deformation aging on microstructure and mechanical properties of 6061 aluminum alloy plate [J].Forging & Stamping Technology,2019,44(7):165-169.
[13]Yin D, Qiao X, Chen Y, et al. Effect of natural ageing and prestraining on the hardening behaviour and microstructural response during artificial ageing of an AlMgSiCu alloy[J]. Materials & Design, 2016, 95:329-339.
[14]Kolar M, Pedersen K O, GulbrandsenDahl S, et al. Combined effect of deformation and artificial aging on mechanical properties of AlMgSi alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1824-1830.
[15]Deschamps A, Brechet Y. Influence of predeformation and ageing of an AlZnMg alloy-II. Modeling of precipitation kinetics and yield stress[J]. Acta Materialia, 1998, 47(1): 293-305.
[16]Ferrante M, Doherty R D. Influence of interfacial properties on the kinetics of precipitation and precipitate coarsening in aluminiumsilver alloys[J]. Acta Metallurgica, 1979, 27(10):1603-1614.
[17]Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heattreatable aluminum alloys containing plate/disc or rod/needleshaped precipitates[J]. Materials Science & Engineering A, 2003, 344(1-2):113-124.
[18]Hart E W. On the role of dislocations in bulk diffusion[J]. Acta Metallurgica, 1957, 5(10): 597.
[19]刘楚明. 铝合金相图集[M].长沙:中南大学出版社, 2014.
Liu C M. Aluminum Alloy Phase Diagrams[M]. Changsha: Central South University Press, 2014.
[20]Nes E E N M, Marthinsen K. Modeling the evolution in microstructure and properties during plastic deformation of f.c.c.metals and alloysan approach towards a unified model[J]. Materials Science and Engineering, 2002, 322(1-2): 176-193.
[21]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-II. Applications of the model[J]. Acta Metallurgica et Materialia, 1990, 38(10): 1803-1812.
[22]Krasilnikov N N S U, Lojkowski W, Pakiela Z, et al. Tensile strength and ductility of ultrafinegrained nickel processed by severe plastic deformation[J]. Materials Science and Engineering A, 2005, 397 (1-2): 330-337.
[23]Starink M J, Deschamps A, Wang S C. The strength of friction stir welded and friction stir processed aluminium alloys[J]. Scripta Materialia, 2008, 58(5): 377-382.
[24]Lan J, Shen X, Liu J, et al. Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging[J]. Materials Science and Engineering A, 2019, 745: 517-535.
[25]Poole W J, Ster J A, Skjervold S, et al. A model for predicting the effect of deformation after solution treatment on the subsequent artificial aging behavior of AA7030 and AA7108 alloys[J]. Metallurgical and Materials Transactions A, 2000, 31(9): 2327-2338.
[26]Krasilnikov N N S U, Lojkowski W, Pakiela Z, et al. Tensile strength and ductility of ultrafinegrained nickel processed by severe plastic deformation[J]. Materials Science and Engineering A, 2005, 397(1-2): 330-337.
|