[1]Zhang C, Wang C, Zhang Q, et al. Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al-Mg-Si alloy [J]. Journal of Materials Processing Technology, 2019, 270: 323-334.
[2]Zhang C, Wang C, Guo R, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high temperature deformation [J]. Journal of Alloys and Compounds, 2019, 773: 59-70.
[3]Weidenmann K A, Fleck C, Schulze V, et al. Materials selection process for compound-extruded aluminium matrix composites [J]. Advanced Engineering Materials, 2005, 7 (12): 1150-1155.
[4]Kleiner M, Schikorra M. Simulation of welding chamber conditions for composite profile extrusion [J]. Journal of Materials Processing Technology, 2006, 177 (1-3): 587-590.
[5]Yu J, Zhao G, Chen L. Analysis of longitudinal weld seam defects and investigation of solid-state bonding criteria in porthole die extrusion process of aluminum alloy profiles [J]. Journal of Materials Processing Technology, 2016, 237: 31-47.
[6]Yu J, Zhao G. Interfacial structure and bonding mechanism of weld seams during porthole die extrusion of aluminum alloy profiles [J]. Materials Characterization, 2018, 138: 56-66.
[7]Taban E, Gould J E, Lippold J C. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization [J]. Materials & Design, 2010, 31 (5): 2305-2311.
[8]Springer H, Kostka A, Payton E J, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys [J]. Acta Materialia, 2011, 59 (4): 1586-1600.
[9]Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel [J]. Journal of Manufacturing Processes, 2017, 26: 178-187.
[10]Schulze A, Dahnke C, Tekkaya A E. Developments in composite extrusion of complex profiles for automotive applications [J]. Materials Today: Proceedings, 2019, 10: 217-225.
[11]Dahnkea C, Kolpaka F, Kloppenborga T, et al. Manufacturing of reinforced profiles by means of combined continuous and discontinuous composite extrusion [J]. Materials Today: Proceedings, 2019, 10: 201-208.
[12]Schwane M, Dahnke C, Haase M, et al. Composite hot extrusion of functional elements [J]. Advanced Materials Research, 2014, 1018: 223-228.
[13]Schwane M, Citrea T, Dahnke C, et al. Simulation of composite hot extrusion with high reinforcing volumes [J]. Procedia Engineering, 2014, 81: 1265-1270.
[14]Citrea T, Dahnke C, Gagliardi F, et al. Optimization of porthole die for non-symmetric composite profiles [J]. Materials Today: Proceedings, 2015, 2(10): 4778-4785.
[15]Schwane M, Kloppenborg T, Haase M, et al. Approaches for the simulation of composite extrusion-possibilities and limits [J]. Materials Today: Proceedings, 2015, 2(10): 4771-4777.
[16]Dahnke C, Pietzka D, Haase M, et al. Extending the flexibility in the composite extrusion process [J]. Procedia CIRP, 2014, 18: 33-38.
[17]Dahnke C, Hilbring J, Kloppenborg T, et al. Investigations for the embedding of functional elements in the composite extrusion process [J]. Materials Today: Proceedings, 2015, 2(10): 4763-4770.
[18]Reeb A, Weidenmann K A. Influence of heat treatment on microstructure and mechanical properties of the interface in an EN AW-6082/1.4310 composite extrusion [J]. Composite Interfaces, 2017, 24(8): 779-800.
|