网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Deform-2D的连续钢丝增强铝基复合棒料挤压流变规律
英文标题:Extrusion rheological law on continuous steel-wire-reinforced aluminum-based composite bar based on Deform-2D
作者:刘明甫 张存生 孟子杰 杨文杰 贺海鑫 
单位:山东大学 材料液固结构演变与加工教育部重点实验室 
关键词:连续纤维增强铝基复合型材 挤压模具 焊合压力 材料流变行为 焊合行为 
分类号:TG31
出版年,卷(期):页码:2021,46(9):177-183
摘要:

 设计了一种连续纤维增强铝基复合圆棒的挤压模具,基于Deform-2D软件对其挤压全过程进行二维数值仿真,研究了复合型材挤压过程中材料的流变规律和挤压焊合路径上各物理场的分布特征,并通过挤压实验获得了连续钢丝增强的铝基复合圆棒。研究结果表明,钢丝上的应力集中是由焊合室内的三向压应力和坯料的流速不均造成的。在复合型材挤压过程中,钢丝与铝基体间的结合首先依赖于焊合室内的焊合压力,随后其在模口外的粘结作用主要取决于挤压温度。在焊合路径上,较高的挤压温度、焊合压力、应变和应变速率均有利于型材焊缝及其界面的焊合。在挤压过程中,铝基体的流动受到纤维的影响,同时也对纤维的嵌入位置和受力状态产生一定影响。

 The extrusion mold of continuous fiber-reinforced aluminum-based composite bar was designed, and the 2D numerical simulation of the entire extrusion process was conducted based on of Deform-2D software. Then, the rheological laws of material and the distribution characteristics of each physical field on the welding path were studied during the extrusion process of composite profiles, and the aluminum-based composite bar  reinforced by continuous steel wire was obtained by extrusion experiment. The results show that the stress concentration on the steel wire is caused by the triaxial compressive stress and the uneven flow of billet in the welding chamber. In the extrusion process of composite profile, the bonding between steel wire and aluminum matrix firstly depends on the welding pressure in the welding chamber, and its adhesion outside the port of mold depends mainly on the extrusion temperature. In the welding path, the higher extrusion temperature, welding pressure, strain and strain rate are beneficial to the welding of the profile weld and its interface. However, during the extrusion process, the flow of the aluminum matrix is affected by the fibers, and it also has a certain impact on the embedding position and the force state of the fibers.

基金项目:
国家自然科学基金资助项目(51975330);山东省重大科技创新工程项目(2019JZZY010360)
作者简介:
刘明甫(1994-),男,博士研究生 E-mail:liumf@mail.sdu.edu.cn 通信作者:张存生(1980-),男,博士,教授 E-mail:zhangcs@sdu.edu.cn
参考文献:

 [1]Zhang C, Wang C, Zhang Q, et al. Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al-Mg-Si alloy [J]. Journal of Materials Processing Technology, 2019, 270: 323-334.


 


[2]Zhang C, Wang C, Guo R, et al. Investigation of dynamic recrystallization and modeling of microstructure evolution of an Al-Mg-Si aluminum alloy during high temperature deformation [J]. Journal of Alloys and Compounds, 2019, 773: 59-70.


 


[3]Weidenmann K A, Fleck C, Schulze V, et al. Materials selection process for compound-extruded aluminium matrix composites [J]. Advanced Engineering Materials, 2005, 7 (12): 1150-1155.


 


[4]Kleiner M, Schikorra M. Simulation of welding chamber conditions for composite profile extrusion [J]. Journal of Materials Processing Technology, 2006, 177 (1-3): 587-590.


 


[5]Yu J, Zhao G, Chen L. Analysis of longitudinal weld seam defects and investigation of solid-state bonding criteria in porthole die extrusion process of aluminum alloy profiles [J]. Journal of Materials Processing Technology, 2016, 237: 31-47.


 


[6]Yu J, Zhao G. Interfacial structure and bonding mechanism of weld seams during porthole die extrusion of aluminum alloy profiles [J]. Materials Characterization, 2018, 138: 56-66.


 


[7]Taban E, Gould J E, Lippold J C. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization [J]. Materials & Design, 2010, 31 (5): 2305-2311.


 


[8]Springer H, Kostka A, Payton E J, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys [J]. Acta Materialia, 2011, 59 (4): 1586-1600.


 


[9]Kimura M, Suzuki K, Kusaka M, et al. Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel [J]. Journal of Manufacturing Processes, 2017, 26: 178-187.


 


[10]Schulze A, Dahnke C, Tekkaya A E. Developments in composite extrusion of complex profiles for automotive applications [J]. Materials Today: Proceedings, 2019, 10: 217-225.


 


[11]Dahnkea C, Kolpaka F, Kloppenborga T, et al. Manufacturing of reinforced profiles by means of combined continuous and discontinuous composite extrusion [J]. Materials Today: Proceedings, 2019, 10: 201-208.


 


[12]Schwane M, Dahnke C, Haase M, et al. Composite hot extrusion of functional elements [J]. Advanced Materials Research, 2014, 1018: 223-228.


 


[13]Schwane M, Citrea T, Dahnke C, et al. Simulation of composite hot extrusion with high reinforcing volumes [J]. Procedia Engineering, 2014, 81: 1265-1270.


 


[14]Citrea T, Dahnke C, Gagliardi F, et al. Optimization of porthole die for non-symmetric composite profiles [J]. Materials Today: Proceedings, 2015, 2(10): 4778-4785.


 


[15]Schwane M, Kloppenborg T, Haase M, et al. Approaches for the simulation of composite extrusion-possibilities and limits [J]. Materials Today: Proceedings, 2015, 2(10): 4771-4777.


 


[16]Dahnke C, Pietzka D, Haase M, et al. Extending the flexibility in the composite extrusion process [J]. Procedia CIRP, 2014, 18: 33-38.


 


[17]Dahnke C, Hilbring J, Kloppenborg T, et al. Investigations for the embedding of functional elements in the composite extrusion process [J]. Materials Today: Proceedings, 2015, 2(10): 4763-4770.


 


[18]Reeb A, Weidenmann K A. Influence of heat treatment on microstructure and mechanical properties of the interface in an EN AW-6082/1.4310 composite extrusion [J]. Composite Interfaces, 2017, 24(8): 779-800.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9