网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于热模锻造的FGH96粉末冶金高温合金晶粒细化工艺
英文标题:Grain refinement process for power metallurgy superalloy FGH96 based on hot die forging
作者:岳太文1 刘旭辉2 门正兴1 姚泽坤3 郭洪镇3 
单位:1. 成都航空职业技术学院 机电工程学院 2. 成都航空职业技术学院 3. 西北工业大学 
关键词:FGH96粉末冶金高温合金 热模锻造 显微组织 晶粒度 晶粒细化 
分类号:TG111.7;TG312
出版年,卷(期):页码:2021,46(10):19-24
摘要:

 FGH96是我国第2代粉末冶金高温合金,采用常规锻造工艺进行开坯和成形极为困难,为了探索合理的细晶盘坯制备方法,在900 ℃的热模温度下,以不同应变速率、变形温度和变形量进行热模锻造实验,研究FGH96粉末冶金高温合金组织的变化规律。结果表明:当以低于γ′相固溶温度锻造时,随着变形温度的升高,显微组织更加均匀,当变形温度超过γ′相固溶温度时,晶粒有长大倾向;合金晶粒度随着变形量的增加而细化,低变形量时组织不均匀,变形量超过30%时能获得较好的细化组织;在1050~1130 ℃变形温度范围、以大于30%的较大变形量锻造时,晶粒度可以提高3个级别以上;采用大变形镦锻、反复镦拔可获得12级左右的再结晶组织,拉伸强度明显提高,断口特征为沿晶和穿晶混合断裂。

 FGH96 is the second generation of power metallurgy superalloy in China, it is very difficult to forge and form by the conventional forging process. Therefore, in order to explore a reasonable preparation method for fine-grained disc billet, the hot die forging experiments were carried out at hot die temperature of 900 ℃ with different strain rates, deformation temperatures and deformation amounts to study the change rules of microstructure for power metallurgy superalloy (P/M superalloy)FGH96. The results show that when the forging temperature is lower than γ′ phase solid solution temperature,the microstructure becomes more uniform with the increasing of the deformation temperature, and when the deformation temperature exceeds the γ′ phase solution temperature, there is a tendency of grain growth. In addition, the grain sizes of alloy are refined with the increasing of the deformation amount, and the microstructure is not uniform when the deformation amount is low, but the better refined structure can be obtained when the deformation amount exceeds 30%. When forging with a large deformation amount greater than 30% at the deformation temperature range of 1050-1130 ℃, the grain sizes can be increased by more than three grades, and the recrystallization structure about grade 12 can be obtained by the large deformation upsetting and repeated upsetting and drawing, which significantly increases the tensile strength and presents the fracture characteristics of intergranular and transgranular mixed fracture.

基金项目:
四川省应用基础研究项目( 2019YJ0519);四川省科技厅项目(18ZB0050)
作者简介:
岳太文(1982-),男,硕士,副教授 E-mail:yuetaiwen@qq.com
参考文献:

 [1]张敏聪, 东赟鹏,刘趁意. FGH96合金热挤压棒材超塑性研究[J]. 材料工程,2012,(7):24-28.


Zhang M C, Dong Y P, Liu C Y. Study on superplasticity of extruded FGH96 alloy[J]. Journal of Materials Engineering,2012, (7):24-28.

[2]宋晓俊, 方爽,东赟鹏,等. 应变速率对挤压态镍基粉末高温合金异常晶粒长大的影响[J]. 热加工工艺,2015,44(13): 42-45.

Song X J, Fang S, Dong Y P, et al. Effect of strain rate on abnormal grain growth of extruded ni-based power metallurgy superalloy[J]. Hot Working Technology,2015,44(13): 42-45.

[3]郭灵, 王淑云,林海.先进航空材料及构件锻压成形技术[M].北京:国防工业出版社, 2011.

Guo L, Wang S Y, Lin H. Forging Techniques of Advanced Aeronautical Materials and Components[M]. Beijing: National Defense Industry Press, 2011.

[4]王超渊, 东赟鹏,宋晓俊,等. 变形温度及变形量对挤压态FGH96合金晶粒异常长大的影响[J].航空材料学报,2016,36(5):14-20.

Wang C Y,Dong Y P,Song X J,et al. Effect of deforming temperature and strain on abnormal grain growth of extruded FGH96 superalloy[J]. Journal of Aeronautical Materials,2016,36(5):14-20.

[5]刘帅, 张雪,于海鑫,等. FGH96激光熔化沉积成形过程对组织与性能的影响[J]. 航空制造技术,2019,62(Z1):72-79.

Liu S, Zhang X, Yu H X, et al. Effect of laser melting deposition process on microstructure and property for FGH96[J]. Aeronautical Manufacturing Technology,2019, 62(Z1):72-79.

[6]宁永权, 姚泽坤. FGH4096粉末高温合金的再结晶形核机制[J].金属学报, 2018,48(8):1005-1010.

Ning Y Q, Yao Z K. Recrystallization nucleation mechanism of FGH4096 powder metallurgy superalloy[J]. Acta Metallurgica Sinica, 2018,48(8):1005-1010.

[7]陈龙, 司家勇,刘松浩,等. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报,2019,33(12):2047-2054.

Chen L, Si J J,Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy[J]. Materials Reports, 2019, 33(12):2047-2054.

[8]李青, 韩雅芳,肖程波, 等. 等温锻造用模具材料的国内外研究发展状况[J]. 材料导报,2004,18(4):9-16.

Li Q, Han Y F, Xiao C B, et al. R & D status of die materials for iso-thermal forging at high temperature[J]. Materials Reports, 2004,18(4):9-16.

[9]马文斌, 吴凯,刘国权,等. PREP FGH4096粉末凝固组织和碳化物研究[J].钢铁研究学报, 2011,23(S2):490-493.

Ma W B, Wu K,Liu G Q, et al. Effect of cooling rete on microstructure of PREP FGH4096 powders[J]. Journal of Iron and Steel Research, 2011, 23(S2):490-493.

[10]傅豪, 王梦雅,纪箴,等. 热变形对FGH96高温合金原始颗粒边界的影响[J]. 粉末冶金技术,2018,36(3):201-205.

Fu H, Wang M Y, Ji Z, et al. Effect of thermal deformation on prior particle boundary of FGH96 superalloy[J]. Powder Metallurgy Technology, 2018, 36(3):201-205.

[11]付锐, 李福林,尹法杰. 多向整体锻造在变形FGH96合金涡轮盘制备中的应用[J]. 稀有金属, 2017, 41(2):113-119.

Fu R, Li F L, Yin F J. Application of multiple integral forging in preparation of wrought superalloy FGH96 turbine disk[J]. Chinese Journal of Rare Metals, 2017, 41(2): 113-119.

[12]黄明星, 汪大成,罗希.GH4169合金小余量小尺寸静子叶片锻造工艺及显微组织控制[J].锻压技术,2020,45(1):41-46.

Huang M X, Wang D C, Luo X. Forging process and microstructure control for alloy GH4169 stator blade with little allowance and small size[J].Forging & Stamping Technology,2020,45(1):41-46.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9