网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
冷轧变形量对传感器用固溶态BT22钛合金板组织及拉伸性能的影响
英文标题:Influence of cold rolling deformation amount on microstructure and tensile properties of solid solution BT22 titanium alloy plate for sensor
作者:张晓斌1 李海生2 
单位:1. 河南建筑职业技术学院 2. 河南科技大学 
关键词:冷轧变形量 固溶处理 钛合金 微观组织 拉伸性能 
分类号:TG146
出版年,卷(期):页码:2021,46(10):93-98
摘要:

 为了提高传感器基板用BT22钛合金板的力学性能,先通过850 ℃+0.5 h固溶处理,然后通过冷轧的方式对其进行加强。通过实验测试手段研究冷轧变形量对固溶态BT22钛合金板的组织及拉伸性能的影响。研究结果表明:综合运用高冷轧变形量与较低再结晶温度有助于BT22钛合金板发生再结晶时形成更多细小尺寸的晶粒。轧制后BT22钛合金板的强度比轧制之前的强度有了较大的提升,强度至少提高200 MPa。随着冷轧变形量的增加,合金强度不断增加,但增加幅度减小。冷轧后合金的伸长率虽有所下降,但依然可以保持在10%以上。冷轧变形后合金的最高屈服强度在冷轧变形量为80%时取得,此时合金的屈服强度为1012 MPa,抗拉强度为1042 MPa,伸长率为10%。

 In order to improve the mechanical properties of BT22 titanium alloy plate used as sensor substrate, BT22 titanium alloy plate was first treated by solid solution treatment at 850 ℃+0.5 h and then strengthened by cold rolling, and the influences of cold rolling deformation amount on the microstructure and tensile properties of solid solution BT22 titanium alloy plate were studied by experimental testing method. The results show that the comprehensive use of high cold rolling deformation amount and low recrystallization temperature can help BT22 titanium alloy plate to form more fine-sized grains when the recrystallization occurs. After rolling, the strength of BT22 titanium alloy plate is greatly improved compared with that before rolling, and the strength is increased by at least 200 MPa. With the increasing of cold rolling deformation amount, the strength of alloy increases continuously, but the increase amplitude decreases. Although the elongation of alloy decreases after cold rolling, it still remains above 10%. In addition, the maximum yield strength of alloy after cold rolling is obtained when the cold rolling deformation amount is 80%, and the yield strength, tensile strength and elongation of alloy are 1012 MPa, 1042 MPa and 10%, respectively.

基金项目:
国家自然科学基金专项基金项目(11347209)
作者简介:
作者简介:张晓斌(1983-),男,硕士,讲师 E-mail:zhangxiaobin0365@126.com
参考文献:

 [1]张纪春,马利霞,李晓华,等. 温度对TNW650高温钛合金双向超塑性锥杯成形的影响 [J]. 锻压技术,2020,45(4):195-201.


Zhang J C,Ma L X,Li X H,et al. Influence of temperature on biaxial superplastic cone-cup forming for high temperature titanium alloy TNW650 [J]. Forging & Stamping Technology,2020, 45(4): 195-201.

[2]陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用[J]. 钛工业进展, 2015, 32(6): 8-12. 

Chen J, Wang T X, Zhou W, et al. Titanium alloys for marine use at home and abroad and their applications [J]. Titanium Industry Progress, 2015, 32(6): 8-12. 

[3]赵永庆. 国内外钛合金研究的发展现状及趋势[J]. 中国材料进展, 2010, 29(5): 1-8. 

Zhao Y Q. Research status and trend of titanium alloys at home and alive [J]. Materials Progress in China, 2010, 29(5): 1-8. 

[4]麻西群, 于振涛, 牛金龙, 等. 新型生物医用钛合金的设计及应用进展[J]. 上海有色金属, 2018, 39(6): 26-31. 

Ma X Q, Yu Z T, Niu J L, et al. Design and application progress of novel biomedical titanium alloy [J]. Shanghai Nonferrous Metals, 2018, 39(6): 26-31. 

[5]邵威,邓沛然,仇健桐,等. Ti-6Al-4V高强钛合金的热拉深成形 [J]. 锻压技术,2020,45(5):56-60.

Shao W,Deng P R,Qiu J T,et al. Warm drawing on Ti-6Al-4V high strength titanium alloy [J]. Forging & Stamping Technology,2020,45(5): 56-60.

[6]张坤, 董洪波, 姜智勇, 等. 冷变形及时效工艺对TB8钛合金组织及性能影响的研究[J]. 稀有金属, 2019, 43(9): 904-910. 

Zhang K, Dong H B, Jiang Z Y, et al. Effect of cold deformation and aging process on microstructure and properties of TB8 Titanium alloy [J]. Chinese Journal of Rare Metals, 2019, 43(9): 904-910. 

[7]周晓虎,刘卫,郝芳,等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响 [J]. 锻压技术,2020, 45(6):29-35.

Zhou X H,Liu W,Hao F,et al. Influence of quasi-β forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forging & Stamping Technology,2020, 45(6):29-35.

[8]Nag S, Banerjee R, Srinivasan R, et al. ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Materialia, 2009, 57(7): 2136-2147. 

[9]Xu T W, Zhang S S, Zhang F S, et al. Effect of ω-assisted precipitation on βα transformation and tensile properties of Ti-15Mo-2.7Nb-3Al-0.2Si alloy[J]. Materials Science & Engineering, 2016, 654(27): 249-255. 

[10] 徐铁伟, 李金山, 张丰收, 等. TB8钛合金双级时效过程中的组织演变及时效响应(英文)[J]. 材料热处理学报, 2016, 37(2): 61-67. 

Xu T W, Li J S, Zhang F S, et al. Microstructure evolution and aging response of TB8 titanium alloy during double stage aging [J]. Journal of Materials and Heat Treatment, 2016, 37(2): 61-67. 

[11] 何丹, 王庆娟, 高颀, 等. 新型β钛合金时效析出相的演变及硬化[J]. 稀有金属, 2016, 40(7): 633-639. 

He D, Wang Q J, Gao Q, et al. Evolution and hardening of precipitates in new β-Ti alloy [J]. Chinese Journal of Rare Metals, 2016, 40(7): 633-639. 

[12] Cordero Z C, Knight B E, Schuh C A. Six decades of the Hall-Petch effect-A survey of grain-size strengthening studies on pure metals[J]. International Materials Reviews, 2016, 61(8): 495-512. 

[13] Song R K, Wei L J, Yang C X, et al. Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness[J]. Journal of Alloys and Compounds, 2018, 744: 552-560. 

[14] 刘全明, 张朝晖, 刘世锋, 等. 钛合金在航空航天及武器装备领域的应用与发展[J]. 钢铁研究学报, 2015, 27(3): 1-4. 

Liu Q M, Zhang Z H, Liu S F, et al. Application and development of Titanium alloy in aerospace and weapon equipment [J]. Journal of Iron and Steel Research, 2015, 27(3): 1-4. 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9