[1]李劲风, 郑子樵, 陈永来, 等. 铝锂合金及其在航天工业上的应用 [J].宇航材料工艺, 2012, (1): 21-27.
Li J F, Zheng Z Q, Chen Y L, et al. AlLi alloys and their application in aerospace industry [J]. Aerospace Materials & Technology, 2012, (1): 21-27.
[2]李红萍, 叶凌英, 邓运来, 等. 航空铝锂合金研究进展 [J]. 中国材料进展, 2016, 35(11): 856-862.
Li H P, Ye L Y, Deng Y L, et al. Progress of aerocraft AlLi alloys [J]. Materials China, 2016, 35(11): 856-862.
[3]冯朝晖, 于娟, 郝敏, 等. 铝锂合金研究进展及发展趋势 [J]. 航空材料学报, 2020, 40(1): 1-11.
Feng C H, Yu J, Hao M, et al. Research progress and development trend of aluminiumlithium alloys [J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11.
[4]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design, 2014, 56: 862-871.
[5]李飘, 姚卫星. 铝锂合金材料发展及综合性能评述 [J]. 航空工程进展, 2019, 10(2): 12-20.
Li P, Yao W X. Review on the development and performance of aluminiumlithium alloys [J]. Advances in Aeronautical Science and Engineering, 2019, 10(2): 12-20.
[6]ElAty A A, Xu Y, Guo X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of AlLi alloys: A review [J]. Journal of Advanced Research, 2018, 10: 49-67.
[7]徐进军, 江茫, 熊纯. 铝锂合金及其在航空航天领域成形技术的研究进展 [J]. 热加工工艺, 2019, 48(24): 11-16.
Xu J J, Jiang M, Xiong C. Research progress of AlLi alloys and its forming technology for aeronautic and astronautic industry [J]. Hot Working Technology, 2019, 48(24): 11-16.
[8]宁爱林, 刘志义, 曾苏民, 等. 铝合金形变热处理工艺研究进展 [J]. 材料导报, 2007, 21(3): 79-81,85.
Ning A N, Liu Z Y, Zeng S M, et al. Research and progress of thermomechanical treatment of aluminium alloy [J]. Materials Review, 2007, 21(3): 79-81,85.
[9]吴璐, 董万鹏, 龚红英, 等. 铝合金的形变热处理研究进展 [J]. 热加工工艺, 2014, 43(4): 27-31.
Wu L, Dong W P, Gong H Y, et al. Research and progress of thermomechanical treatment of Al alloy [J]. Hot Working Technology, 2014, 43(4): 27-31.
[10]孙会, 沈忱. 铝合金中间形变热处理工艺方法及研究进展 [J]. 金属热处理, 2019, 44(7): 217-223.
Sun H, Shen C. Technology and research progress of intermediate thermomechanical treatment for aluminium alloys [J]. Heat Treatment of Metals, 2019, 44(7): 217-223.
[11]Huang K, Marthinsen K, Zhao Q L, et al. The doubleedge effect of secondphase particles on the recrystallization behaviour and associated mechanical properties of metallic materials [J]. Progress In Materials Science, 2018, 92: 284-359.
[12]Huang K, Loge R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Materials & Design, 2016, 111: 548-574.
[13]张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32(1): 41-55.
Zhang X M, Liu S D. Aerocraft aluminium alloys and their materials processing [J]. Materials China, 2013, 32(1): 41-55.
[14]郑子樵, 李劲风, 陈志国, 等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21(10): 2337-2351.
Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of AlLi alloys [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2337-2351.
[15]Tayon W A, Nygren K E, Crooks R E, et al. Insitu study of planar slip in a commercial aluminumlithium alloy using high energy Xray diffraction microscopy [J]. Acta Materialia, 2019, 173: 231-241.
[16]Sun J W, Wu G H, Zhang L, et al. Microstructure characteristics of an ultrahigh strength extruded Al4.7Cu1Li0.5Mg0.1Zr1Zn alloy during heat treatment [J]. Journal of Alloys and Compounds, 2020, 813: 152216.
[17]邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 321-347.
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 321-347.
[18]Wang Y X, Zhao G Q, Xu X, et al. Microstructures and mechanical properties of spray deposited 2195 AlCuLi alloy through thermomechanical processing [J]. Materials Science and Engineering: A, 2018, 727: 78-89.
[19]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-I. The model [J]. Acta Metallurgica et Materialia, 1990, 38(10): 1789-1802.
[20]Li Y, Shi Z S, Lin J. Experimental investigation and modelling of yield strength and work hardening behaviour of artificially aged AlCuLi alloy [J]. Materials & Design, 2019, 183: 108121.
[21]杨夏炜. 铝合金大型复杂构件热处理过程的多场耦合模型与变形预报[D]. 哈尔滨:哈尔滨工业大学, 2013.
Yang X W. Multifield Coupling Models and Deformation Prediction of Aluminum Alloy Large Complicated Workpieces During Heat Treatment [J]. Harbin:Harbin Institute of Technology, 2013.
[22]Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195 [J]. Journal of Alloys and Compounds, 2016, 669: 187-198.
[23]Rodgers B I, Prangnell P B. Quantification of the influence of increased prestretching on microstructurestrength relationships in the AlCuLi alloy AA2195 [J]. Acta Materialia, 2016, 108: 55-67.
[24]Wang X M, Shao W Z, Jiang J T, et al. Quantitative analysis of the influences of pretreatments on the microstructure evolution and mechanical properties during artificial ageing of an AlCuLiMgAg alloy [J]. Materials Science and Engineering: A, 2020, 782: 139253.
[25]Zhu Q Q, Lu Y, Xu X C, et al. Influence of multiaxial compression pretreatment on the microstructure evolution and mechanical properties of an AlCuLi alloy during aging [J]. Journal of Materials Science, 2020, 55(16): 7052-7065.
[26]Taylor G I. The mechanism of plastic deformation of crystals-Part I-Theoretical [J]. Proceedings of the Royal Society of London, 1934, 145(855): 362-387.
[27]Li Y, Shi Z S, Lin J, et al. A unified constitutive model for asymmetric tension and compression creepageing behaviour of naturally aged AlCuLi alloy [J]. International Journal of Plasticity, 2017, 89: 130-149.
[28]Tao J, Zhang L, Wu G H, et al. Effect of heat treatment on the microstructure and mechanical properties of extruded Al4Cu1Li0.4Mg0.4Ag0.18Zr alloy [J]. Materials Science and Engineering: A, 2018, 717: 11-19.
[29]Xu J J, Deng Y L, Chen J Q, et al. Effect of ageing treatments on the precipitation behavior and mechanical properties of AlCuLi alloys [J]. Materials Science and Engineering aStructural Materials Properties Microstructure and Processing, 2020, 773: 138885.
[30]Zhang S F, Zeng W D, Yang W H, et al. Ageing response of a AlCuLi 2198 alloy [J]. Materials & Design, 2014, 63: 368-374.
[31]Balducci E, Ceschini L, Messieri S, et al. Thermal stability of the lightweight 2099 AlCuLi alloy: Tensile tests and microstructural investigations after overaging [J]. Materials & Design, 2017, 119: 54-64.
[32]Deng Y J, Bai J H, Wu X D, et al. Investigation on formation mechanism of T1 precipitate in an AlCuLi alloy [J]. Journal of Alloys and Compounds, 2017, 723: 661-666.
[33]Gao Z, Liu J Z, Chen J H, et al. Formation mechanism of precipitate T1 in AlCuLi alloys [J]. Journal of Alloys and Compounds, 2015, 624: 22-26.
[34]Tsivoulas D. Heterogeneous nucleation of the T1 phase on dispersoids in AlCuLi alloys [J]. Metallurgical and Materials Transactions APhysical Metallurgy and Materials Science, 2015, 46(6): 2342-2346.
[35]陈志国, 杨文玲, 王诗勇, 等. 微合金化铝合金的研究进展 [J]. 稀有金属材料与工程, 2010, 39(8): 1499-1504.
Chen Z G, Yang W L, Wang S Y, et al. Research progress of microalloyed Al alloys [J]. Rare Metal Materials and Engineering, 2010, 39(8): 1499-1504.
[36]Decreus B, Deschamps A, Geuser F D, et al. The influence of Cu/Li ratio on precipitation in AlCuLiX alloys [J]. Acta Materialia, 2013, 61(6): 2207-2218.
[37]Araullopeters V, Gault B, Geuser F D, et al. Microstructural evolution during ageing of AlCuLiX alloys [J]. Acta Materialia, 2014, 66: 199-208.
[38]Gumbmann E, Lefebvre W, Geuser F D, et al. The Effect of minor solute additions on the precipitation path of an AlCuLi alloy [J]. Acta Materialia, 2016, 115: 104-114.
[39]Gumbmann E, Geuser F D, Sigli C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an AlCuLi alloy [J]. Acta Materialia, 2017, 133: 172-185.
[40]Dorin T, Geuser F D, Lefebvre W, et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an AlCuLi alloy [J]. Materials Science and Engineering: A, 2014, 605: 119-126.
[41]Dorin T, Deschamps A, Geuser F D, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an AlCuLi alloy [J]. Acta Materialia, 2014, 75: 134-146.
[42]Deschamps A, Decreus B, Geuser F D, et al. The influence of precipitation on plastic deformation of AlCuLi alloys [J]. Acta Materialia, 2013, 61(11): 4010-4021.
[43]Goswami R, Bernstein N. Effect of interfaces of grain boundary Al2CuLi plates on fracture behavior of Al3Cu2Li [J]. Acta Materialia, 2015, 87: 399-410.
[44]Zhang L, Zheng Z Q, Li J F, et al. Microstructural evolution and mechanical properties of a new AlCuLiX alloy at different solution temperatures [J]. Rare Metals, 2021, 40(3): 635-642.
[45]Duan S W, Matsuda K, Wang T, et al. Microstructures and mechanical properties of a cast AlCuLi alloy during heat treatment procedure [J]. Rare Metals, 2020, 40(7): 1897-1906.
[46]Zheng J H, Lin J, Lee J, et al. A novel constitutive model for multistep stress relaxation ageing of a prestrained 7xxx series alloy [J]. International Journal of Plasticity, 2018, 106: 31-47.
[47]Ma Z Y, Zhan L H, Liu C H, et al. Stressleveldependency and bimodal precipitation behaviors during creep ageing of AlCu alloy: Experiments and modeling [J]. International Journal of Plasticity, 2018, 110: 183-201.
[48]Nayan N, Mahesh S, Prasad M, et al. A phenomenological hardening model for an aluminiumlithium alloy [J]. International Journal of Plasticity, 2019, 118: 215-232.
[49]Jiang F L, Takaki S, Masumura T, et al. Nonadditive strengthening functions for coldworked cubic metals: Experiments and constitutive modeling [J]. International Journal of Plasticity, 2020, 129: 102700.
[50]Esmaeili S, Wang X, Lloyd D J, et al. The influence of precipitation on the precipitationhardening behavior of the AlMgSiCu alloy AA6111 [J]. Metallurgical & Materials Transactions A, 2003, 34(3): 751-763.
[51]周向龙, 黄长清, 崔晓辉, 等. 时效工艺对电磁成形7075铝合金组织与性能的影响 [J]. 锻压技术, 2020, 45(10): 169-176.
Zhou X L, Huang C Q, Cui X H, et al. Influence of aging process on microstructure and properties of 7075 aluminum alloy by electromagnetic forming [J]. Forging & Stamping Technology, 2020, 45 (10): 169-176.
|