网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝锂合金形变热处理工艺研究进展
英文标题:Research progress on thermomechanical treatment process for Al-Li alloy
作者:李建军 徐佳辉 黄亮 谢冰鑫 
单位:华中科技大学 
关键词:铝锂合金 形变热处理 微观组织演变 强韧化机制 多物理场 
分类号:TG391
出版年,卷(期):页码:2021,46(11):1-10
摘要:

 形变热处理工艺是铝锂合金力学性能的重要调控方式。介绍了铝锂合金以及形变热处理的发展历程和特点。综述了铝锂合金形变热处理的经典阶段,即固溶淬火、预变形和人工时效阶段。描述了不同阶段下材料的微观组织演变特征及其对材料力学性能的影响,包括过饱和固溶体演变、塑性变形诱导位错演变、位错促进析出相形核、析出相演变模型、材料强韧化机制以及力学模型。介绍了耦合多物理场的形变热处理工艺新发展,但是相关影响机制有待进一步研究,相关的析出相演变模型、时效动力学模型有待进一步完善。最后,针对现有研究提出了后续值得继续深入研究的方向。

 The thermomechanical treatment (TMT) process is an important way to control the mechanical properties of Al-Li alloy. Therefore, the development history and characteristics of Al-Li alloy and TMT were introduced, and the classic stages of TMT for Al-Li alloy were reviewed, namely, solution quenching, pre-deformation and artificial aging stages. Then, the microstructure evolution of Al-Li alloy at different stages and their influences on the mechanical properties of material were described, including supersaturated solid solution evolution, dislocation evolution induced by plastic deformation, nucleation of precipitated phase promoted by dislocation, precipitated phase evolution model, material strengthening and toughening mechanism and mechanical model. Furthermore, the new development of TMT coupled with multi-physics field was introduced. But the related influence mechanism needed to be further studied, and the related precipitation phase evolution model and aging kinetic model needed to be further improved. Finally, in view of the existing research, the follow-up direction worthy of further research was proposed.

基金项目:
国家自然科学基金面上项目(51975229);武汉市应用基础前沿项目(2020010601012178);湖北省重点研发计划项目(2020BAB139)
作者简介:
作者简介:李建军(1964-),男,博士,教授, E-mail:jianjun@hust.edu.cn; 通信作者:黄亮(1981-),男,博士,教授, E-mail:huangliang@hust.edu.cn
参考文献:

[1]李劲风, 郑子樵, 陈永来, . 铝锂合金及其在航天工业上的应用 [J].宇航材料工艺, 2012, (1): 21-27.


Li J F, Zheng Z Q, Chen Y L, et al. AlLi alloys and their application in aerospace industry [J]. Aerospace Materials & Technology, 2012, (1): 21-27.


[2]李红萍, 叶凌英, 邓运来, . 航空铝锂合金研究进展 [J]. 中国材料进展, 2016, 35(11): 856-862.


Li H P, Ye L Y, Deng Y L, et al. Progress of aerocraft AlLi alloys [J]. Materials China, 2016, 35(11): 856-862.


[3]冯朝晖, 于娟, 郝敏, . 铝锂合金研究进展及发展趋势 [J]. 航空材料学报, 2020, 40(1): 1-11.


Feng C H, Yu J, Hao M, et al. Research progress and development trend of aluminiumlithium alloys [J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11.


[4]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design, 2014, 56: 862-871.


[5]李飘, 姚卫星. 铝锂合金材料发展及综合性能评述 [J]. 航空工程进展, 2019, 10(2): 12-20.


Li P, Yao W X. Review on the development and performance of aluminiumlithium alloys [J]. Advances in Aeronautical Science and Engineering, 2019, 10(2): 12-20.


[6]ElAty A A, Xu Y, Guo X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of AlLi alloys: A review [J]. Journal of Advanced Research, 2018, 10: 49-67.


[7]徐进军, 江茫, 熊纯. 铝锂合金及其在航空航天领域成形技术的研究进展 [J]. 热加工工艺, 2019, 48(24): 11-16.


Xu J J, Jiang M, Xiong C. Research progress of AlLi alloys and its forming technology for aeronautic and astronautic industry [J]. Hot Working Technology, 2019, 48(24): 11-16.


[8]宁爱林, 刘志义, 曾苏民, . 铝合金形变热处理工艺研究进展 [J]. 材料导报, 2007, 21(3): 79-8185.


Ning A N, Liu Z Y, Zeng S M, et al. Research and progress of thermomechanical treatment of aluminium alloy [J]. Materials Review, 2007, 21(3): 79-8185.


[9]吴璐, 董万鹏, 龚红英, . 铝合金的形变热处理研究进展 [J]. 热加工工艺, 2014, 43(4): 27-31.


Wu L, Dong W P, Gong H Y, et al. Research and progress of thermomechanical treatment of Al alloy [J]. Hot Working Technology, 2014, 43(4): 27-31.


[10]孙会, 沈忱. 铝合金中间形变热处理工艺方法及研究进展 [J]. 金属热处理, 2019, 44(7): 217-223.


Sun H, Shen C. Technology and research progress of intermediate thermomechanical treatment for aluminium alloys [J]. Heat Treatment of Metals, 2019, 44(7): 217-223.


[11]Huang K, Marthinsen K, Zhao Q L, et al. The doubleedge effect of secondphase particles on the recrystallization behaviour and associated mechanical properties of metallic materials [J]. Progress In Materials Science, 2018, 92: 284-359.


[12]Huang K, Loge R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Materials & Design, 2016, 111: 548-574.


[13]张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32(1): 41-55.


Zhang X M, Liu S D. Aerocraft aluminium alloys and their materials processing [J]. Materials China, 2013, 32(1): 41-55.


[14]郑子樵, 李劲风, 陈志国, . 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21(10): 2337-2351.


Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of AlLi alloys [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2337-2351.


[15]Tayon W A, Nygren K E, Crooks R E, et al. Insitu study of planar slip in a commercial aluminumlithium alloy using high energy Xray diffraction microscopy [J]. Acta Materialia, 2019, 173: 231-241.


[16]Sun J W, Wu G H, Zhang L, et al. Microstructure characteristics of an ultrahigh strength extruded Al4.7Cu1Li0.5Mg0.1Zr1Zn alloy during heat treatment [J]. Journal of Alloys and Compounds, 2020, 813: 152216.


[17]邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 321-347.


Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 321-347.


[18]Wang Y X, Zhao G Q, Xu X, et al. Microstructures and mechanical properties of spray deposited 2195 AlCuLi alloy through thermomechanical processing [J]. Materials Science and Engineering A, 2018, 727: 78-89.


[19]Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-I. The model [J]. Acta Metallurgica et Materialia, 1990, 38(10): 1789-1802.


[20]Li Y, Shi Z S, Lin J. Experimental investigation and modelling of yield strength and work hardening behaviour of artificially aged AlCuLi alloy [J]. Materials & Design, 2019, 183: 108121.


[21]杨夏炜. 铝合金大型复杂构件热处理过程的多场耦合模型与变形预报[D]. 哈尔滨:哈尔滨工业大学, 2013.


Yang X W. Multifield Coupling Models and Deformation Prediction of Aluminum Alloy Large Complicated Workpieces During Heat Treatment [J]. HarbinHarbin Institute of Technology, 2013.


[22]Kim J H, Jeun J H, Chun H J, et al. Effect of precipitates on mechanical properties of AA2195 [J]. Journal of Alloys and Compounds, 2016, 669: 187-198.


[23]Rodgers B I, Prangnell P B. Quantification of the influence of increased prestretching on microstructurestrength relationships in the AlCuLi alloy AA2195 [J]. Acta Materialia, 2016, 108: 55-67.


[24]Wang X M, Shao W Z, Jiang J T, et al. Quantitative analysis of the influences of pretreatments on the microstructure evolution and mechanical properties during artificial ageing of an AlCuLiMgAg alloy [J]. Materials Science and Engineering: A, 2020, 782: 139253.


[25]Zhu Q Q, Lu Y, Xu X C, et al. Influence of multiaxial compression pretreatment on the microstructure evolution and mechanical properties of an AlCuLi alloy during aging [J]. Journal of Materials Science, 2020, 55(16): 7052-7065.


[26]Taylor G I. The mechanism of plastic deformation of crystals-Part I-Theoretical [J]. Proceedings of the Royal Society of London, 1934, 145(855): 362-387.


[27]Li Y, Shi Z S, Lin J, et al. A unified constitutive model for asymmetric tension and compression creepageing behaviour of naturally aged AlCuLi alloy [J]. International Journal of Plasticity, 2017, 89: 130-149.


[28]Tao J, Zhang L, Wu G H, et al. Effect of heat treatment on the microstructure and mechanical properties of extruded Al4Cu1Li0.4Mg0.4Ag0.18Zr alloy [J]. Materials Science and Engineering: A, 2018, 717: 11-19.


[29]Xu J J, Deng Y L, Chen J Q, et al. Effect of ageing treatments on the precipitation behavior and mechanical properties of AlCuLi alloys [J]. Materials Science and Engineering aStructural Materials Properties Microstructure and Processing, 2020, 773: 138885.


[30]Zhang S F, Zeng W D, Yang W H, et al. Ageing response of a AlCuLi 2198 alloy [J]. Materials & Design, 2014, 63: 368-374.


[31]Balducci E, Ceschini L, Messieri S, et al. Thermal stability of the lightweight 2099 AlCuLi alloy: Tensile tests and microstructural investigations after overaging [J]. Materials & Design, 2017, 119: 54-64.


[32]Deng Y J, Bai J H, Wu X D, et al. Investigation on formation mechanism of T1 precipitate in an AlCuLi alloy [J]. Journal of Alloys and Compounds, 2017, 723: 661-666.


[33]Gao Z, Liu J Z, Chen J H, et al. Formation mechanism of precipitate T1 in AlCuLi alloys [J]. Journal of Alloys and Compounds, 2015, 624: 22-26.


[34]Tsivoulas D. Heterogeneous nucleation of the T1 phase on dispersoids in AlCuLi alloys [J]. Metallurgical and Materials Transactions APhysical Metallurgy and Materials Science, 2015, 46(6): 2342-2346.


[35]陈志国, 杨文玲, 王诗勇, . 微合金化铝合金的研究进展 [J]. 稀有金属材料与工程, 2010, 39(8): 1499-1504.


Chen Z G, Yang W L, Wang S Y, et al. Research progress of microalloyed Al alloys [J]. Rare Metal Materials and Engineering, 2010, 39(8): 1499-1504.


[36]Decreus B, Deschamps A, Geuser F D, et al. The influence of Cu/Li ratio on precipitation in AlCuLiX alloys [J]. Acta Materialia, 2013, 61(6): 2207-2218.


[37]Araullopeters V, Gault B, Geuser F D, et al. Microstructural evolution during ageing of AlCuLiX alloys [J]. Acta Materialia, 2014, 66: 199-208.


[38]Gumbmann E, Lefebvre W, Geuser F D, et al. The Effect of minor solute additions on the precipitation path of an AlCuLi alloy [J]. Acta Materialia, 2016, 115: 104-114.


[39]Gumbmann E, Geuser F D, Sigli C, et al. Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an AlCuLi alloy [J]. Acta Materialia, 2017, 133: 172-185.


[40]Dorin T, Geuser F D, Lefebvre W, et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an AlCuLi alloy [J]. Materials Science and Engineering: A, 2014, 605: 119-126.


[41]Dorin T, Deschamps A, Geuser F D, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an AlCuLi alloy [J]. Acta Materialia, 2014, 75: 134-146.


[42]Deschamps A, Decreus B, Geuser F D, et al. The influence of precipitation on plastic deformation of AlCuLi alloys [J]. Acta Materialia, 2013, 61(11): 4010-4021.


[43]Goswami R, Bernstein N. Effect of interfaces of grain boundary Al2CuLi plates on fracture behavior of Al3Cu2Li [J]. Acta Materialia, 2015, 87: 399-410.


[44]Zhang L, Zheng Z Q, Li J F, et al. Microstructural evolution and mechanical properties of a new AlCuLiX alloy at different solution temperatures [J]. Rare Metals, 2021, 40(3): 635-642.


[45]Duan S W, Matsuda K, Wang T, et al. Microstructures and mechanical properties of a cast AlCuLi alloy during heat treatment procedure [J]. Rare Metals, 2020, 40(7): 1897-1906.


[46]Zheng J H, Lin J, Lee J, et al. A novel constitutive model for multistep stress relaxation ageing of a prestrained 7xxx series alloy [J]. International Journal of Plasticity, 2018, 106: 31-47.


[47]Ma Z Y, Zhan L H, Liu C H, et al. Stressleveldependency and bimodal precipitation behaviors during creep ageing of AlCu alloy: Experiments and modeling [J]. International Journal of Plasticity, 2018, 110: 183-201.


[48]Nayan N, Mahesh S, Prasad M, et al. A phenomenological hardening model for an aluminiumlithium alloy [J]. International Journal of Plasticity, 2019, 118: 215-232.


[49]Jiang F L, Takaki S, Masumura T, et al. Nonadditive strengthening functions for coldworked cubic metals: Experiments and constitutive modeling [J]. International Journal of Plasticity, 2020, 129: 102700.


[50]Esmaeili S, Wang X, Lloyd D J, et al. The influence of precipitation on the precipitationhardening behavior of the AlMgSiCu alloy AA6111 [J]. Metallurgical & Materials Transactions A, 2003, 34(3): 751-763.


[51]周向龙, 黄长清, 崔晓辉, . 时效工艺对电磁成形7075铝合金组织与性能的影响 [J]. 锻压技术, 2020, 45(10): 169-176.


Zhou X L, Huang C Q, Cui X H, et al. Influence of aging process on microstructure and properties of 7075 aluminum alloy by electromagnetic forming [J]. Forging & Stamping Technology, 2020, 45 (10): 169-176.


服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9