网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金汽车前下摆臂成形工艺的有限元模拟与优化
英文标题:Finite element simulation and optimization on forming process of automobile front lower sway arm for aluminum alloy
作者:殷剑 黎诚 金康 殷佳健 孙奋丽 
单位:北京机电研究所有限公司 中机精密成形产业技术研究院(安徽)股份有限公司 
关键词:铝合金 汽车前下摆臂 弯曲 折叠缺陷 模具优化 
分类号:TG316
出版年,卷(期):页码:2021,46(11):74-82
摘要:

 针对6082铝合金汽车前下摆臂生产过程中发现的锻件肋部金属汇流缺陷,根据实际生产中的锻造工艺方案与模具建立有限元模型,并设置锻件的初始温度为500 ℃、摩擦因数为0.4、模具温度为280 ℃、热交换系数为2 N·(mm·s·℃)-1,然后对锻造过程进行数值模拟。并对弯曲工序与终锻工序中的温度场、压力场、零件厚度尺寸分布等进行了分析,重点研究了金属汇流缺陷处的金属流动规律,确定了其为折叠缺陷,并提出对模具过渡圆角进行优化的改进措施,将筋和腹板上圆角半径由原来的3 mm增加到8 mm。最后,通过实验验证了该模具优化措施的可行性。

 For the metal confluence defect at the rib of forgings found in the production process of automobile front lower arm for 6082 aluminum alloy, a finite element model was established based on the forging process scheme and mold in the actual production, and the forging process was simulated numerically in the condition of the initial temperature of 500 ℃, the friction coefficient of 0.4, the mold temperature of 280 ℃ and the heat exchange coefficient of 2 N·(mm·s·℃)-1. Then, the distributions of temperature field, pressure field and thickness sizes of part in the bending and final forging processes were analyzed. Especially the metal flow law at the metal confluence defect was studied, and it was determined that it was a folding defect. Furthermore, the improvement measures for optimizing the transition fillet of mold were proposed, and the fillet radii of ribs and webs were increased from the original 3 mm to 8 mm. Finally, the feasibility of the mold optimization measures was verified by experiments.

基金项目:
作者简介:
作者简介:殷剑(1997-),男,硕士研究生,E-mail:a18726451924@163.com;通信作者:金康(1978-),男,硕士,高级工程师,E-mail:jinkang@cmipf.com
参考文献:

 [1]刘奕辰, 崔新生.基于飞轮储能的独立光伏发电系统设计[J].信息技术,2018,42(8):82-86.


Liu Y C, Cui X S. Standalone photovoltaic power system design based on flywheel energy storage technology[J]. Information Technology, 2018, 42(8): 82-86.


[2]付彦军, 李锡武,黄树晖,.Cu,Er元素对石油钻探用AlZnMgCu合金组织与性能的影响[J].稀有金属,2020,44(9):897-904.


Fu Y JLi X WHuang S H, et al. Cu and Er elements on microstructure and properties of AlZnMgCu alloy for oil drilling[J]. Chinese Journal of Rare Metals,2020,44(9):897-904.


[3]李茂军, 刘光磊,蒋文辉,.深冷+固溶+时效复合处理对A356合金微观组织和力学性能的影响[J].稀有金属, 2020, 44(1):100-106.


 Li M J, Liu G L, Jiang W H, et al. Effect of cryogenic+solid solution+ageing composite treatment on microstructure and mechanical properties of A356 alloy[J]. Chinese Journal of Rare Metals, 2020, 44(1):100-106.


[4]曹振华, 孙巍,荣伟,.6082铝合金挤压棒材粗晶环问题研究[J].热处理技术与装备,2014,35(5):37-39.


Cao Z H, Sun W, Rong W,et al. Research on the problem of coarse grain ring on extrusion bar of 6082 aluminum alloy[J]. Heat Treatment Technology and Equipment, 2014, 35(5): 37-39.


[5]王家毅, 米振莉,李辉,.基于热加工图6082铝合金锻造工艺优化及强化机制研究[J].稀有金属,2019, 43(2): 113-121.


Wang J Y, Mi Z L, Li H, et al.  Isothermal forging process and strengthening mechanism of 6082 aluminum alloy through processing map[J]. Chinese Journal of Rare Metals, 2019, 43(2): 113-121.


[6]张星临, 陈送义,周亮,.成分对AlZnMgCu超强铝合金淬火敏感性及组织性能的影响[J].稀有金属,2019, 43(6): 561-570.


Zhang X L, Chen S Y, Zhou L, et al. Effect of composition on quenching sensitivity and microstructuresproperties of superstrength AlZnMgCu aluminum alloys[J]. Chinese Journal of Rare Metals, 2019, 43(6): 561-570.


[7]徐小静, 张剑波,刘涛涛.高强度异形臂一次模锻成型技术探析[J].机电信息,2019(23):8789.


Xu X J, Zhang J B, Liu T T. Onestep die forging technology of highstrength specialshaped arms[J]. Mechanical and Electrical Information, 2019(23): 8789.


[8]向晶, 谢尚昇,李剑,.固溶处理对6082铝合金棒材粗晶环和力学性能的影响[J].热加工工艺,2016,45(20):200-203206.


Xiang J, Xie S S, Li J, et al. Effect of solution treatment on coarse grain ring and mechanical properties of 6082 aluminum alloy bars[J]. Hot Working Technology, 2016, 45(20): 200-203206.


[9]Lin Y C, Jiang Y Q, Chen X M, et al. Effect of creepaging on precipitates of 7075 aluminum alloy[J]. Materials Science and Engineering A, 2013, 588(20):347-356.


[10]包其华, 潘琦俊,吴生绪,.汽车铝合金控制臂的模锻成形[J].金属加工:热加工,2011(5):16-18.


Bao Q H, Pan Q J, Wu S X, et al. Die forging forming of automotive aluminum alloy control arm[J]. MW Metal Forming, 2011(5): 16-18.


[11]邹永恒, 陶虹,徐国明,.6082铝合金热处理工艺参数的研究[J].金属热处理,200732(10):71-76.


Zou Y H, Tao H, Xu G M, et al. Research on heat treatment parameters of 6082 aluminum alloy[J]. Heat Treatment of Metals, 2007, 32(10): 71-76.


[12]曹甫. 铝合金控制臂等温锻造工艺与微观组织数值模拟[D].长春:吉林大学,2016.


Cao F. Numerical Simulation of Isothermal Forging Process and Microstructure of Aluminum Alloy Control Arm[D]. Changchun: Jilin University, 2016.


[13]孙伟领, 丁金根,边翊,.铝合金控制臂锻造工艺参数优化与缺陷分析[J].锻压技术,2019,44(5):29-34.


Sun W L, Ding J G, Bian Y, et al. Optimization on forging process parameters and defect analysis for aluminum alloy control arm[J]. Forging & Stamping Technology, 2019, 44(5): 29-34.


[14]彭雯雯, 曾卫东,康超,.Deform有限元模拟软件材料数据库的开发与应用[J].材料导报,2011,25(8):131-134.


Peng W W, Zeng W D, Kang C, et al. Development and application of materials database of finite element simulation software Deform[J]. Materials Review, 2011, 25(8): 131-134.


[15]张万金, 屈丽杰,刘维洲.铝合金模锻件折叠缺陷产生的原因与预防措施[J].轻金属,2002(11):58-60.


Zhang W J, Qu L J, Liu W Z. Causes and preventive measures of folding defects of aluminum alloy die forgings[J]. Light Metals, 2002(11): 58-60.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9