网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
LF21铝合金盒型零件充液拉深成形极限
英文标题:Forming limit of LF21 aluminum alloy box-shaped part by hydrodynamic deep drawing
作者:崔丽 张帅 赵文华 杜建宁 荣旭辉 袁健富 张建民 郎利辉 
单位:沈阳飞机工业(集团)有限公司 天津天锻航空科技有限公司 北京航空航天大学 
关键词:充液拉深 极限拉深比 成形极限 LF21铝合金 有限元分析 
分类号:TG359
出版年,卷(期):页码:2021,46(11):160-167
摘要:

 通过刚性拉深和充液拉深对比试验,研究LF21(3A21)铝合金材料的拉伸极限,解决深盒型零件成形困难的问题。对LF21(3A21)铝合金材料的力学性能及成形工艺进行分析,基于有限元分析,使用试验设备对板料进行拉深试验,使用有限元分析并计算得到LF21铝合金薄壁板的成形极限云图和板料减薄云图,通过所得云图和计算结果以及进一步实践验证得出两者之间的误差,同时进行刚性拉深对比试验,为最后计算零件的拉深比提供了依据,为航空航天飞行器的轻量化研究提供了可靠的技术支持和保证。最后得出厚度为1.8 mm的LF21铝合金材料的充液拉深一次成形的极限拉深比为3.32,为该材料拉深零件的成形方案提供了技术参考。

 The tensile limit of LF21 (3A21) aluminum alloy material was studied by the comparative test of rigid deep drawing and hydrodynamic deep drawing, and the problem of difficulty in forming deep box-shaped parts was solved. Then, the mechanical properties and forming process of LF21 (3A21) aluminum alloy material were analyzed, and based on the finite element analysis, the drawing experiments were carried out on sheet metal by the experimental equipment. Furthermore, the forming limit diagram (FLC) and sheet metal thinning nephogram of LF21 aluminum alloy thin-walled sheet were obtained by finite element analysis and calculation, and the error of the two was obtained through the obtained nephogram, calculation results and further practical verification. At the same time, the rigid drawing comparison test was conducted, which provided a basis for the final calculation of the drawing ratio of part, which provides reliable technical support and guarantee for the lightweight research of aerospace vehicles. Finally, the limit drawing ratio of a single process of hydrodynamic deep drawing for LF21 aluminum alloy with the thickness of 1.8 mm is 3.32, which provides technical reference for the forming scheme of deep drawing parts of the material.

基金项目:
作者简介:
作者简介:崔丽(1982-),女,博士,高级工程师,E-mail:cui1008@acic.com;通信作者:张帅(1995-),男,学士,助理工程师,E-mail:13652095025@139.com
参考文献:

 [1]郎利辉, 张士宏, 康达昌, . 板液压成形及无模充流拉深技术[J]. 塑性工程学报, 20029(4): 29-34.


Lang L H, Zhang S H, Kang D C, et al. About sheet hydroforming and hydromechanical deep drawing without draw die[J]. Journal of Plasticity Engineering, 2002,9(4): 29-34.


[2]苑世剑, 刘伟, 徐永超, . 板材液压成形技术与装备新进展[J]. 机械工程学报, 2015, 51(8): 20-28.


Yuan S J, Liu W, Xu Y C, et al. New development on technology and equipment of sheet hydroforming[J]. Journal of Mechanical Engineering, 2015, 51(8): 20-28.


[3]苑世剑. 现代液压成形技术[M]. 北京:国防工业出版社,2009.


Yuan S J. Modern Hydroforming Technology[M]. BeijingNational Defense Industry Press2009.


[4]郎利辉, 李涛, 周贤宾, .先进充液柔性成形技术及其关键参数研究[J].中国机械工程, 2006, 17(S1): 19-22.


Lang L H, Li T, Zhou X B, et al. Investigation into the innovative sheet hydroforming and the effect of key process parameters[J]. China Mechanical Engineering, 2006, 17(S1): 19-22.


[5]Liu X J, Xu Y C, Yuan S J. Formation of aluminummagnesium alloy cup by hydrodynamic deep drawing with twinloading paths[J]. Journal of Wuhan University of Technology, 2009, (2): 193-197.


[6]Xu Y C, Han C, Liu X, et al. Effects of radial pressure on 5A06 aluminum alloy cup hydroforming[J]. Steel Research International, 2010, 81(9): 632-635.


[7]Jeswiet J, Geiger M, Kleiner M, et al. Metal forming progress since 2000[J]. CIRP Journal of Manufacturing Science and Technology, 2008, 1: 2-17.


[8]汪振华, 袁军堂, 胡小秋, . 防锈铝合金LF21的高速铣削试验[J].中国机械工程, 2009, 20(14): 1660-1664.


Wang Z H, Yuan J T, Hu X Q, et al. Experimental study on milling forces in highspeed end milling of LF21 aluminum alloy[J]. China Mechanical Engineering, 2009, 20(14): 1660-1664.


[9]黄巍, 李荻, 郭宝兰, . 防锈铝合金耐氯化钠盐雾腐蚀行为的研究[J]. 材料保护, 2005, (6): 52-54,77.


Huang W, Li D, Guo B L, et al. Corrosion behavior of antirust LF21M aluminum alloy in NaCl salt spray[J]. Materials Protection, 2005, (6): 52-54,77.


[10]熊爱奎. 2B06铝合金板料充液拉伸的研究[A].“装备中国”2016滨海杯高端装备工业设计大赛论文集[C]. 天津, 2016.


Xiong A K. Study on the liquid filled drawing of 2B06 aluminum alloy sheet [A]. Proceedings of 2016 Binhai Cup High End Equipment Industrial Design Competition of “Equipment China”[C]. Tianjin, 2016.


[11]杨踊, 孙淑铎, 刘慧茹, . 航空发动机复杂型面罩子钣充液成形技术[J]. 航空制造技术, 2010,(1): 91-94,99.


Yang YSun S D, Liu H R, et al. Hydro forming technology of complex profi le cover sheet of aeroengine[J]. Aeronautical Manufacturing Technology, 2010, (1): 91-94,99.


[12]丁少行, 郎利辉, 黄磊. 2024铝合金难成形高锥盒形件充液成形数值模拟[J].精密成形工程, 2014, 6(3): 31-35,40.


Ding S H, Lang L H, Huang L. Simulation research on hydroforming of hard forming deep tapershaped part of 2024 aluminum alloy[J]. Journal of Netshape Forming Engineering, 2014, 6(3): 31-35,40.


[13]Wei D B, Luo L, Hideki S, et al. Simulations of hydromechanical deep drawing using Voronoi model and real microstructure model[J]. Procedia Engineering, 2017,207: 1033-1038.


[14]Ling J, Li H G, Tao J, et al. Hydromechanical deep drawing simulation and preparation of novel AlLi alloy irregular cups[J]. Advanced Materials Research, 2015, 3797: 337-340.


[15]陈林, 熊爱奎, 王英杰, . 航空发动机高锥体零件充液成形工艺[J]. 锻压技术, 2020, 45(7): 72-76.


Chen LXiong A K, Wang Y J, et al. Hydroforming technology of high cone parts for aeroengine[J]. Forging & Stamping Technology, 2020, 45(7): 72-76.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9