网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7075铝合金多向锻造过程的元胞自动机数值模拟
英文标题:Numerical simulation on cellular automata in multi-direction forging process of 7075 aluminum alloy
作者:黄东英 张磊 刘晓红 
单位:广西大学 广西有色金属及特色材料加工重点实验室 
关键词:元胞自动机 7075铝合金 多向锻造 平均晶粒尺寸 晶粒分布 
分类号:TG319
出版年,卷(期):页码:2021,46(12):13-19
摘要:

 为研究7075铝合金在强塑性变形前后组织演变的元胞自动机(CA)数值模拟的可靠性,基于热压缩的真应力-真应变曲线,建立了7075铝合金的再结晶、位错密度、流变应力和形核率模型,利用元胞自动机法模拟7075铝合金的多向锻造过程,分析模拟后合金的晶粒分布和晶粒演变,并与合金在多向锻造前后的电子背散射衍射(EBSD)试验结果进行对比分析。结果显示:模拟所得合金的平均晶粒尺寸为6.813 μm,而试验所得合金的平均晶粒尺寸为6.57 μm,且模拟所得锻造前后的合金晶粒尺寸和分布情况与试验结果相符。表明通过CA法模拟7075铝合金多向锻造过程的结果与其试验结果的吻合度较高,CA法对合金平均晶粒尺寸的预测和晶粒分布特征的观测具有一定的可信度。

 In order to research the reliability of numerical simulation on cellular automata (CA) of microstructure evolution for 7075 aluminum alloy before and after strong plastic deformation, based on the true stress-true strain curve of hot compression,  models of recrystallization, dislocation density, rheological stress and nucleation rate for 7075 aluminum alloy were established, and the multi-directional forging process of 7075 aluminum alloy  was simulated by CA method. Then, the grain distribution and grain evolution of the alloy after simulation were analyzed, and the experimental results of the alloy before and after multi-directional forging obtained by the electron backscatter diffraction (EBSD) were compared and analyzed. The results show that the average grain sizes of the alloy obtained by simulation and experiment are 6.813 and 6.57 μm respectively, and the sizes and distribution of grain in the alloy before and after forging obtained by simulation are consistent with the experimental results, indicating that the simulation results of the multi-directional forging process for 7075 aluminum alloy by CA method are in good agreement with the experimental results. Thus, CA method has certain credibility for the prediction of average grain sizes and the observation of grain distribution characterization for the alloy.

基金项目:
广西大学有色金属及特色材料加工重点试验室开放基金(2020GXYSOF14)
作者简介:
作者简介:黄东英(1994-),女,硕士研究生 E-mail:1811301007@st.gxu.edu.cn 通信作者:刘晓红(1980-),女,硕士,副教授,硕士生导师
参考文献:

 [1]Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Materials Science and Engineering A, 1997, 225: 135-144.


[2]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280: 102-107.


[3]田福泉, 崔建忠. 超高强铝合金的显微组织[J]. 轻合金加工技术,200634 (2): 48-53.


Tian F Q, Cui J Z. Microstructures of ultra high strength aluminum alloys [J]. Light Alloy Fabrication Technology, 2006, 34(2): 48-53.


[4]Bi J, Sun K, Liu R, et al. Effect of ECAP pass number on mechanical properties of 2A12 Al alloy [J]. Journal of Wuhan University of TechnologyMaterials Science Edition, 2008, 23(1): 71-73.


[5]董蔚霞, 王晓溪,夏华明,等. 新型等径角挤压工艺下的5052铝合金变形行为的有限元模拟 [J]. 精密成形工程,2015(3)43-47.


Dong W X, Wang X X, Xia H M, et al. Finite element simulation of 5052 aluminum alloy deformation behavior in a new type of equal channel [J]. Journal of Netshape Forming Engineering, 2015, (3)43-47.


[6]蒋方敏, 吴运新,张涛,等. 基于元胞自动机法的7055铝合金动态再结晶模拟研究[J].热加工工艺, 2017, 46 (12): 235-238242.


Jiang F M, Wu Y X, Zhang T, et al. Study on dynamic recrystallization simulation of 7055 aluminum alloy based on cellular automata method [J]. Hot Working Technology, 2017,46(12):235-238, 242.


[7]余新平, 董洪波. TC21钛合金β锻动态再结晶行为及晶粒尺寸预测[J].塑性工程学报, 2015, 22 (1): 39-45.


Yu X P, Dong H B. Prediction of dynamic recrystalization and grain size of TC21 titanium alloy in β forging [J]. Journal of Plasticity Engineering, 2015, 22 (1): 39-45.


[8]靳舜尧, 唐振宇,黄重国. 5A02铝合金薄壁异形管内高压成形数值模拟及试验[J].稀有金属, 2020, 44(11):1121-1128.


Jin S Y, Tang Z Y, Huang Z G. Numerical simulation and experiment of internal high pressure formingIHPFof 5A02 aluminum alloy thinwalled shaped tubes[J]. Chinese Journal of Rare Metals, 2020, 44 (11): 1121-1128.


[9]黄始全. 7050铝合金锻造过程动态再结晶元胞自动机模拟[D]. 长沙:中南大学, 2009.


Huang S Q. Cellular Automata Simulation of Dynamic Recrystallization in Forging Process of 7050 Aluminum Alloy [D]. Changsha: Central South University, 2009.


[10]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science, 2000, 45 (2): 103-189.


[11]康春爽. 铸态7075铝合金筒形件强力热反旋微观组织演变有限元数值模拟[D]. 南昌:南昌航空大学, 2018.


Kang C S. FE Analysis of Microstructure Evolution of Cast 7075 Aluminum Cylindrical During the Hot Power Backward Spinning Process [D]. Nanchang: Nanchang Hangkong University, 2018.


[12]潘复生, 张丁菲. 铝合金及应用[M]. 北京:化学工业出版社, 2006.


Pan F S, Zhang D F. Aluminum Alloy and Its Application [M]. Beijing:Chemical Industry Press, 2006.


[13]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49 (16): 3163-3175.


[14]陶慧, 邓文杰, 黄甜甜, . 多向锻造与时效处理对7075铝合金强塑性的影响[J]. 热加工工艺, 2019,(9): 137-139.


Tao H, Deng W J, Huang T T, et al. Effect of multidirectional forging and aging treatment on strength and plasticity of 7075 aluminum alloy [J]. Hot Working Technology, 2019,(9): 137-139.


[15]Sitdikov O, Sakai T, Goloborodko A, et al. New grain formation in a coarsegrained 7475 Al alloy during severe hot forging [J]. Materials Science Forum, 2004, 467: 421-426.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9