[1]Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Materials Science and Engineering A, 1997, 225: 135-144.
[2]Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280: 102-107.
[3]田福泉, 崔建忠. 超高强铝合金的显微组织[J]. 轻合金加工技术,2006,34 (2): 48-53.
Tian F Q, Cui J Z. Microstructures of ultra high strength aluminum alloys [J]. Light Alloy Fabrication Technology, 2006, 34(2): 48-53.
[4]Bi J, Sun K, Liu R, et al. Effect of ECAP pass number on mechanical properties of 2A12 Al alloy [J]. Journal of Wuhan University of Technology:Materials Science Edition, 2008, 23(1): 71-73.
[5]董蔚霞, 王晓溪,夏华明,等. 新型等径角挤压工艺下的5052铝合金变形行为的有限元模拟 [J]. 精密成形工程,2015,(3):43-47.
Dong W X, Wang X X, Xia H M, et al. Finite element simulation of 5052 aluminum alloy deformation behavior in a new type of equal channel [J]. Journal of Netshape Forming Engineering, 2015, (3):43-47.
[6]蒋方敏, 吴运新,张涛,等. 基于元胞自动机法的7055铝合金动态再结晶模拟研究[J].热加工工艺, 2017, 46 (12): 235-238,242.
Jiang F M, Wu Y X, Zhang T, et al. Study on dynamic recrystallization simulation of 7055 aluminum alloy based on cellular automata method [J]. Hot Working Technology, 2017,46(12):235-238, 242.
[7]余新平, 董洪波. TC21钛合金β锻动态再结晶行为及晶粒尺寸预测[J].塑性工程学报, 2015, 22 (1): 39-45.
Yu X P, Dong H B. Prediction of dynamic recrystalization and grain size of TC21 titanium alloy in β forging [J]. Journal of Plasticity Engineering, 2015, 22 (1): 39-45.
[8]靳舜尧, 唐振宇,黄重国. 5A02铝合金薄壁异形管内高压成形数值模拟及试验[J].稀有金属, 2020, 44(11):1121-1128.
Jin S Y, Tang Z Y, Huang Z G. Numerical simulation and experiment of internal high pressure forming(IHPF)of 5A02 aluminum alloy thinwalled shaped tubes[J]. Chinese Journal of Rare Metals, 2020, 44 (11): 1121-1128.
[9]黄始全. 7050铝合金锻造过程动态再结晶元胞自动机模拟[D]. 长沙:中南大学, 2009.
Huang S Q. Cellular Automata Simulation of Dynamic Recrystallization in Forging Process of 7050 Aluminum Alloy [D]. Changsha: Central South University, 2009.
[10]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science, 2000, 45 (2): 103-189.
[11]康春爽. 铸态7075铝合金筒形件强力热反旋微观组织演变有限元数值模拟[D]. 南昌:南昌航空大学, 2018.
Kang C S. FE Analysis of Microstructure Evolution of Cast 7075 Aluminum Cylindrical During the Hot Power Backward Spinning Process [D]. Nanchang: Nanchang Hangkong University, 2018.
[12]潘复生, 张丁菲. 铝合金及应用[M]. 北京:化学工业出版社, 2006.
Pan F S, Zhang D F. Aluminum Alloy and Its Application [M]. Beijing:Chemical Industry Press, 2006.
[13]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49 (16): 3163-3175.
[14]陶慧, 邓文杰, 黄甜甜, 等. 多向锻造与时效处理对7075铝合金强塑性的影响[J]. 热加工工艺, 2019,(9): 137-139.
Tao H, Deng W J, Huang T T, et al. Effect of multidirectional forging and aging treatment on strength and plasticity of 7075 aluminum alloy [J]. Hot Working Technology, 2019,(9): 137-139.
[15]Sitdikov O, Sakai T, Goloborodko A, et al. New grain formation in a coarsegrained 7475 Al alloy during severe hot forging [J]. Materials Science Forum, 2004, 467: 421-426.
|