网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6014铝合金热冲压流变行为的本构模型修正
英文标题:Modification on constitutive model for rheological behavior of 6014 aluminum alloy in hot stamping
作者:沈智1 石一磬2 周英丽3 卢经典1 刘佳玉1 
单位:1. 南昌工程学院 机械工程学院 2.北京机电研究所有限公司 3. 北京机科国创轻量化科学研究院有限公司 
关键词:6014铝合金  本构模型  热冲压  流变行为  十字件拉深 
分类号:TG302
出版年,卷(期):页码:2021,46(12):67-73
摘要:

 利用热模拟实验机对6014铝合金进行了不同变形温度(400~500 ℃)和不同应变速率(0.01~1 s-1)下的热拉伸实验,分析了变形温度与应变速率对6014铝合金高温下力学行为的影响,利用实验数据并基于采用Zener-Hollmon参数的双曲正弦函数模型建立并修正了6014铝合金热冲压流变行为的本构模型,最终通过十字件拉深数值模拟与实验进行了对比验证。研究结果表明:6014铝合金的流变应力随着应变的增加迅速增加后趋于平稳,同时,随着应变速率的增加而增加,随着变形温度的增加而降低;使用扫描电子显微镜观察到试样的断口形貌为韧性断裂,说明高温下6014铝合金的塑性大幅提升;修正得到的本构模型具有较高的精度,平均误差为5.4%。

  The hot tensile experiments of 6014 aluminum alloy at different deformation temperatures (400-500 ) and different strain rates (0.01-1 s-1) were conducted by the thermal simulation experiment machine, and the influences of deformation temperature and strain rate on the mechanical behavior of 6014 aluminum alloy were analyzed. Then, using experimental data, the constitutive model of rheological behavior for 6014 aluminum alloy in hot stamping was established and modified based on the hyperbolic sine function model using Zener-Hollmon parameters, and the numerical simulation and experiment of cross-part drawing were compared and verified. The results show that the rheological stress of 6014 aluminum alloy increases rapidly first and then becomes steadily with the increasing of strain, which increases with the increasing of strain rate and decreases with the increasing of deformation temperature. In addition, the fracture morphology of specimen observed by SEM is ductile fracture, indicating that the plasticity of 6014 aluminum alloy is greatly improved at high temperature, and the modified constitutive model has high accuracy with an average error of 5.4%.

基金项目:
江西省教育厅科技项目(GJJ201903);国家科技重大专项(2014ZX04002-071)
作者简介:
作者简介:沈智(1980-),男,博士,讲师,工程师 E-mail:nickshen009@163.com
参考文献:

 [1]胡群林, 温秀海, 陈晓锋. 汽车车身轻量化发展方向探讨[J]. 成组技术与生产现代化, 2014, 31(4):38-45.


Hu Q L, Wen X H, Chen X F. Discussion on development direction of car body lightweight[J]. Group Technology & Production Modernization, 2014, 31(4):38-45.


[2]路洪洲, 王智文, 陈一龙, .汽车轻量化评价[J]. 汽车工程学报, 2015, 5(1):1-8.


Lu H Z, Wang Z W, Chen Y L, et al. Evaluation methodology for automotive lightweight design[J]. Chinese Journal of Automotive Engineering, 2015, 5(1):1-8.


[3]向晓峰, 魏丽霞,马鸣图. 汽车轻量化技术的应用[J].汽车工程师, 2012, (5):57-59.


Xiang X F, Wei L X, Ma M T. The application of automotive lightweight technology[J]. Auto Engineer, 2012, (5):57-59.


[4]Lin J, Dean T A, Garrett R P, et al. Process for forming metal alloy sheet components[P]. WO: GB2007/004347, 2007-11-13.


[5]Jin J S, Wang X Y, Deng L, et al. A singlestep hot stampingforging process for aluminum alloy shell parts with nonuniform thickness [J]. Journal of Materials Processing Technology, 2016, 228(2):170-178.


[6]Matsumoto T, Li N, Shi X, et al. An investigation of deformation effects on phase transformation in hot stamping processes [J]. SAE International Journal of Materials and Manufacture, 2016, 9(2):501-505.


[7]Zhou J, Wang B Y, Lin J G, et al. Forming defects in aluminum alloy hot stamping of sidedoor impact beam[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11):3611-3620.


[8]Meng Q L, Wang B Y, Fu L, et al. The influence of process parameters during hot stamping of AA6111 aluminum alloy sheet [J] Advanced Materials Research, 2012, 1992(572): 255-260.


[9]邓云飞, 张永, 吴华鹏,. 6061T651铝合金动态力学性能及JC本构模型的修正[J]. 机械工程学报, 2020, 56(20): 74-81.


Deng Y F, Zhang Y, Wu H P, et al. Dynamic mechanical properties and modification of JC constitutive model of 6061T651 aluminum alloy[J]. Journal of Mechanical Engineering, 2020, 56(20): 74-81.


[10]Ashtiani H, Shahsavari P. Constitutive modeling of flow behavior of precipitationhardened AA7022T6 aluminum alloy at elevated temperature[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11):2927-2940.


[11]韩俊超, 董晓传,曲周德,等. 5182 铝合金板材成形性能研究 [J]. 塑性工程学报,202027(2): 87-93.


Han J C, Dobg X C, Qu Z D, et al. Study on formability of 5182 aluminum alloy sheet[J]. Journal of Plasticity Engineering, 2020, 27(2): 87-93.


[12]王孟君, 周威, 任杰, . 汽车用5182铝合金的温拉深成形性能[J]. 中南大学学报:自然科学版,2010, 41(3):936-939.Wang M J, Zhou W, Ren J, et al. Forming properties of 5182 aluminum alloy for automotive body sheet during warm deep drawing process[J]. Journal of Central South University: Science and Technology, 2010, 41(3):936-939.


[13]Liu L, Wu Y X, Gong H, et al. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3):448-459.


[14]Zhang T, Zhang S H, Li L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression7055[J]. Journal of Central South University, 2019, 26(11):2930-2942.


[15]傅垒, 王宝雨, 周靖, . 6111铝合金热变形行为及本构方程[J]. 塑性工程学报, 2013, 20(2):107-111.


Fu L, Wang B Y, Zhou J, et al. Constitutive equation for hot deformation behavior of 6111 aluminum alloy[J]. Journal of Plasticity Engineering, 2013, 20(2):107-111.


[16]Rokni M R, ZareiHanzaki A, Widener C A, et al. The straincompensated constitutive equation for high temperature flow behavior of an AlZnMgCu Alloy [J]. Journal of Materials Engineering and Performance, 2014, 23(11):4002-4009.


[17]韩言, 赵飞, 万明攀,. TC17钛合金热流变行为组织演变机制研究[J]. 稀有金属, 2020, 44(3):234-241.


Han Y, Zhao F, Wan M P, et al. Thermal flow behaviors and microstructure evolution of TC17 alloy[J]. Chinese Journal of Rare Metals, 2020, 44(3):234-241.


[18]杨秋月, 向嵩, 谭元标,. 47Zr45Ti5Al3V合金高温流变行为及本构模型研究[J]. 稀有金属, 2020,44(8):816-825.


Yang Q Y, Xiang S, Tan Y B, et al. Constitutive modeling for hightemperature flow behavior of 47ZR45TI5AL3V alloy[J]. Chinese Journal of Rare Metals, 2020,44(8):816-825.


[19]Wang N, Andrey Ilinich, Chen M H, et al. Comparative study on constitutive models for flow behavior of high strength aluminum alloy AA7075 in hot stamping[J]. Rare Metal Materials and Engineering, 2020, 49(1): 10-20.


[20]冯振宇, 李恒晖, 刘义,. 中低应变率下7075T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(6): 12088-12093.


Feng Z Y, Li H H, Liu Y, et al. Comparison of constitutive and failure models of 7075T7351 alloy at intermediate and low strain rates[J]. Materials Reports, 2020, 34(6): 12088-12093.


[21]沈智. 6014铝合金温热冲压成形性能与工艺研究[D]. 北京:中国机械科学研究总院集团有限公司, 2017.


Shen Z. Research on Formability and Process for Warm and Hot Stamping 6014 Aluminum Alloy[D]. Beijing: China Academy of Machinery Science and Technology Group, 2017.


[22]马闻宇, 王宝雨, 周靖,. AA6082铝合金热变形损伤本构模型[J]. 中国有色金属学报, 2015, 25(3):595-601.


Ma W Y, Wang B Y, Zhou J, et al. Damage constitutive model for thermal deformation of AA6082 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3):595-601.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9