网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超声滚挤压强化7050铝合金的表面粗糙度
英文标题:Surface roughness of 7050 aluminum alloy strengthened by ultrasonic rolling extrusion
作者:   捡1    飞2 3 王晓强2 3 
单位:1.河南机电职业学院 巨通电梯学院 2. 河南科技大学 机电工程学院 3. 机械装备先进制造河南省协同创新中心 
关键词:超声滚挤压强化 7050铝合金 表面粗糙度 正交试验 指数函数预测模型法 灰色关联分析法 
分类号:TG376.1
出版年,卷(期):页码:2021,46(12):148-153
摘要:

 为获得超声滚挤压强化7050铝合金过程中加工参数对表面粗糙度的敏感程度,开展超声滚挤压强化7050铝合金表面粗糙度正交试验,基于表面粗糙度试验结果,运用极差分析法、指数函数预测模型法、灰色关联分析法等确定加工参数对表面粗糙度的影响程度。研究结果表明:超声滚挤压强化7050铝合金过程中加工参数对表面粗糙度的影响程度依次为工件转速、静压力和进给速度;表面粗糙度的最优加工参数水平为:n350 r·min-1F400 Nf10 mm·min-13种不同方法相互检验,确定出的加工参数对表面粗糙度的灵敏程度一致。超声滚挤压强化过程中,合理控制对表面粗糙度影响显著的加工参数,能够实现工件表面质量达到最佳。

 In order to obtain the sensitivity of the processing parameters on surface roughness in the process of ultrasonic rolling extrusion strengthening for 7075 alumiunm alloy, the orthogonal test on surface roughness of 7050 aluminum alloy strengthened by ultrasonic rolling extrusion was carried out, and based on surface roughness test results, the influence degree of processing parameters on surface roughness were determined by range analysis method, exponential function prediction model method and grey correlation analysis method. The results show that in the process of ultrasonic rolling extrusion strengthening for 7050 aluminum alloy, the order of influence degree of processing parameters on surface roughness is workpiece rotate speed, static pressure and feeding speed, and the optimal processing parameter level of surface roughness is n=350 r·min-1, F=400 N, f=10 mm·min-1. Furthermore, the three different methods are mutually tested, and the sensitivity of processing parameters on the surface roughness is consistent. Thus, in the process of ultrasonic rolling extrusion strengthening, the best surface quality of the workpiece can be achieved by reasonably controlling the processing parameters, which have significant influence on the surface roughness.

基金项目:
国家自然科学基金资助项目(U1804145)
作者简介:
作者简介:陈 捡(1985-),男,硕士,讲师 E-mail:263718315@qq.com 通信作者:刘 飞(1989-),男,硕士 E-mail:liufei07104517@163.com
参考文献:

 [1]   Brotzu A, Lellis G D, Felli F, et al. Study of defect formation in Al 7050 alloys[J]. Procedia Structural Integrity, 2017, 3: 246-252.


 


[2]   马伟. 航空铝合金薄壁件切削过程及加工变形仿真分析[D]. 长春: 吉林大学, 2020.


 


Ma W. Simulation Analysis of Cutting Process and Machining Deformation of Aviation Aluminum Alloy Thinwalled Parts[D]. Changchun: Jilin University, 2020.


 


[3]   Bozdana A T, Gind N N Z, Li H. Deep cold rolling with ultrasonic vibrationsa new mechanical surface enhancement technique[J]. International Journal of Machine Tools and Manufacture, 2005, 45(6): 713-718.


 


[4]   张勤俭, 王会英, 徐文胜. 超声挤压强化技术的研究现状及发展前景[J]. 电加工与模具, 2013, (6): 11-14.


 


Zhang Q J, Wang H Y, Xu W S. The research status and developing prospect of ultrasonic extrusion strengthening technology[J]. Electrical Machining and Grinding Tools, 2013, (6): 11-14.


 


[5]   Wang G QLei M KGuo D M. Interactions between surface integrity parameters on AISI 304 austenitic stainless steel components by ultrasonic impact treatment[J]. Procedia Cirp2016, 45: 323-326.


 


[6]   Liu D, Liu D X, Zhang X H, et al. Surface nanocrystallization of 17-4 precipitationhardening stainless steel subjected to ultrasonic surface rolling process[J]. Materials Science and Engineering A, 2018, 726(30): 69-81.


 


[7]   Zhang Q L, Hu Z Q, Su W W, et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J]. Surface and Coatings Technology, 2017, 321(15): 64-73.


 


[8]   蒋书祥, 郑建新. 二维超声滚压7050铝合金的微观组织与力学性能[J]. 金属热处理, 2018, 43(5): 116-119.


 


Jiang S X, Zheng J X. Microstructure and mechanical properties of 7050 aluminum alloy treated by two dimensional ultrasonic rolling[J]. Heat Treatment of Metals, 2018, 43(5): 116-119.


 


[9]   罗傲梅, 郭伟. -扭复合振动超声深滚加工表面强化研究[J]. 表面技术, 2015, 44(5): 106-110.


 


Luo A M, Guo W. Research on surface strengthening by ultrasonic deep rolling with longitudinaltorsional vibration[J]. Surface Technology, 2015, 44(5): 106-110.


 


[10]侯雅丽. 纵—扭复合振动超声深滚加工表面强化机理研究[D]. 焦作: 河南理工大学, 2015.


 


Hou Y L. Research on Surface Enhancement Mechanism of Ultrasonic Deep Rolling With Longitudinaltorsional Vibration[D]. Jiaozuo: Henan Polytechnic University, 2015.


 


[11]聂文忠, 马亚健, 陆建民, . 纵扭复合超声振动铣削K9玻璃表面质量的研究[J]. 机床与液压, 2020, 48(20): 45-48.


 


Nie W Z, Ma Y J, Lu J M, et al. Study on surface quality of K9 glass by longitudinal torsional composite ultrasonic vibration milling[J]. Machine Tool & Hydraulics, 2020, 48(20): 45-48.


 


[12]马亚健, 聂文忠, 陆建民, . 纵扭复合超声振动铣削SiCp/Al表面质量研究[J]. 机床与液压, 2020, 48(8): 45-48.


 


Ma Y J, Nie W Z, Lu J M, et al. Study on surface quality of SiCp/Al by longitudinal and torsional composite ultrasonic vibration milling[J]. Machine Tool & Hydraulics, 2020, 48(8): 45-48.


 


[13]林佳杰, 魏昕, 杨宇辉, . 工程陶瓷纵扭复合超声振动螺旋磨削制孔表面质量研究[J]. 机电工程, 2020, 37(7): 806-810.


 


Lin J J, Wei X, Yang Y H,et al. Surface quality of helical grinding holes of engineering ceramics with longitudinaltorsional composite ultrasonic vibration[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(7): 806-810.


 


[14]赵波, 别文博, 王晓博, . -扭复合超声钻削TC4钛合金振动系统设计与试验[J]. 航空学报, 2020, 41(1): 291-303.


 


Zhao B, Bie W B, Wang X B, et al. Design and experimental investigation on vibration system of longitudinaltorsional ultrasonic drilling TC4 titanium alloy[J]. Chinese Journal of Aeronautics, 2020, 41(1): 291-303.


 


[15]姚国林, 徐红玉, 王晓强, . 风电轴承套圈超声滚挤压表层物理力学性能预测模型[J]. 塑性工程学报, 2020, 27(7): 109-116.


 


Yao G L, Xu H Y, Wang X Q, et al. Prediction model of physical and mechanical properties of ultrasonic roller extrusion surface of wind power bearing ring[J]. Journal of Plasticity Engineering, 2020, 27(7): 109-116.


 


[16]徐红玉, 刘立波, 崔凤奎. 风电轴承套圈超声滚压强化残余应力形成规律分析[J]. 塑性工程学报, 2019, 26(5): 125-132.


 


Xu H Y, Liu L B, Cui F K. Analysis of residual stress formation in ultrasonic rolling strengthening of wind power bearing rings[J]. Journal of Plasticity Engineering, 2019, 26(5): 125-132.


 


[17]王晓强, 徐少可, 崔凤奎, . 轴承套圈表面超声滚挤压加工硬化模型[J]. 塑性工程学报, 2019, 26(3): 231-237.


 


Wang X Q, Xu S K, Cui F K, et al. Ultrasonic roller extrusion hardening model for bearing ring surface[J]. Journal of Plasticity Engineering, 2019, 26(3): 231-237.


 


[18]郑建新, 任元超. 7050铝合金二维超声滚压加工表面完整性综合评价[J]. 中国机械工程, 2018, 29(13): 1622-1626.


 


Zheng J X, Ren Y C. Comprehensive assessment of surface integrity in two dimensional ultrasonic rolling 7050 aluminum alloys[J]. China Mechanical Engineering, 2018, 29(13): 1622-1626.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9