网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2A12铝合金旋压形变和热处理工艺
英文标题:Spinning deformation and heat treatment process of 2A12 aluminum alloy
作者:张子祺 李国平 
单位:济南大学 机械工程学院 
关键词:2A12铝合金 强力旋压 固溶热处理 时效热处理 减薄率 
分类号:TG376
出版年,卷(期):页码:2021,46(12):197-202
摘要:

 为了提高2A12铝合金薄壁壳体的力学性能,同时减小薄壁结构壳体的热处理变形,采用多道次强力正旋工艺在室温环境下对2A12铝合金进行了旋压试验,并结合旋压形变和热处理工艺研究和分析了减薄率、固溶热处理、时效热处理工艺对2A12铝合金力学性能的影响。试验结果表明:采用水冷固溶的铝合金的力学性能要优于真空气冷固溶的铝合金,水冷固溶处理的铝合金的抗拉强度比真空气冷工艺高出5690 MPa,伸长率高出3.2%4.7%。铝合金工件经过水冷固溶后必然产生一定的变形,再通过旋压工艺可在一定程度上提高工件的精度,由于加工硬化,铝合金的力学性能大幅下降,而此时进行人工时效获得的力学性能要优于自然时效。

 In order to improve the mechanical properties and reduce the heat treatment deformation of 2A12 aluminum alloy thin-walled shell, the spinning experiment of 2A12 aluminum alloy at room temperature was conducted by the multi-pass power spinning process, and the influences of thinning ratio, solution heat treatment and aging heat treatment process on the mechanical properties of 2A12 aluminum alloy were investigated and analyzed by combining the spinning deformation and heat treatment process. The experimental results show that the mechanical properties of aluminum alloy after water-cooled solution are better than those after vacuum-air-cooled solution, its tensile strength and elongation after water-cooled solution are 56-90 MPa and 3.2%-4.7% higher than those after vacuum-air-cooled solution respectively. Furthermore, the aluminum alloy workpiece inevitably produces a certain deformation after the water-cooled solution, and the accuracy of the workpiece can be improved to a certain extent by the spinning process. Due to the work hardening, the mechanical properties of the workpiece are reduced significantly, and the mechanical properties obtained by artificial aging are better than those obtained by natural aging.

基金项目:
作者简介:
作者简介:张子祺(2000-),男,本科生 E-mail:504472235@qq.com 通信作者:李国平(1971-),男,博士,教授 E-mail:me_ligp@ujn.edu.cn
参考文献:

 [1]   赵飞. 2A12铝合金时效成形的微观组织及力学性能[D]. 大连:大连理工大学, 2010.


 


Zhao F. Microstructures and Mechanical Properties of 2A12 Aluminum Alloy after Age Forming [D].DalianDalian University of Technology,2010.


 


[2]   孙跃飞. 2A12铝合金环形锻件热处理工艺研究[J]. 热加工工艺, 2019, 48(12):159-160,164.


 


Sun Y F. Heat treatment process of 2A12 aluminum alloy ring forging[J]. Hot Working Technology, 2019, 48(12):159-160,164.


 


[3]   曾嵘, 黄亮,李建军. 铝合金椭球形件强力旋压可旋性数值模拟分析[A]. 第十三届全国塑性工程学术年会暨第五届全球华人塑性技术研讨会论文集[C].武汉:中国机械工程学会塑性工程分会,2013.


 


Zeng R, Huang L, Li J J. Numerical simulation of aluminum spinnability in ellipsoidal power spinning [A]. Proceedings of the 13th National Symposium on Plasticity Engineering and the 5th Global Chinese Symposium on Plasticity Technology [C]. Wuhan: China Society for Technology of Plasticity,CMES2013.


 


[4]   Xiao G F, Xia Q X, Cheng X Q, et al. Metal flow model of cylindrical parts by counterroller spinning[A]. The 11th International Conference on Technology of Plasticity[C]. Nagoya2014.        


 


[5]   黄亮, 杨合,詹梅,等. 旋轮参数对铝合金分形旋压的影响规律[J]. 塑性工程学报, 2009,16(2): 85-89.


 


Huang L, Yang H, Zhan M, et al. Research on influences of roller parameters on splitting spinning of aluminum alloy [J]. Journal of Plasticity Engineering, 2009, 16(2): 85-89.


 


[6]   Xu W C, Zhao X K, Ma H, et al. Influence of roller distribution modes on spinning force during tube spinning [J]. International Journal of Mechanical Sciences,2016,113:10-25.


 


[7]   于辉, 刘帅帅,王秀琳,. 小口径薄壁筒形件变薄旋压工艺及实验[J]. 塑性工程学报,2015,22(4): 84-87.


 


Yu H, Liu S S, Wang X L, et al. Power spinning process and experiment research for small diameter thinwalled cylindrical workpiece [J]. Journal of Plasticity Engineering, 2015,22(4): 84-87.


 


[8]   杨文华, 廖哲,郝花蕾,等. 3A21铝合金锥形件旋压成形工艺 [J].锻压技术,2019,44(10):88-93.


 


Yang W HLiao ZHao H Let al. Spinning forming process of 3A21 aluminum alloy conical parts [J]. Forging & Stamping Technology2019,44(10):88-93.


 


[9]   Xia Q X, Cheng X Q, Hu Y, et al. Finite element analysis and experimental investigation on deformation mechanism of nonaxisymmetric tube spinning[J]. Int. J. Adv. Manuf. Technol., 201259:263-272.


 


[10]陈锦洪, 王成勇,叶鹏飞,.大长径比铝合金筒正反旋成形性对比研究[J].机械工程学报,2018,25(5): 142-147.


 


Chen J H, Wang C Y, Ye P F, et al. Formability comparison of aluminum alloy cylinder with large lengthdiameter ratio in forward spinning and backward spinning [J]. Journal of Plasticity Engineering,2018,25(5): 142-147.


 


[11]刘文辉, 罗号,谭永胜,. 横轧对6016铝合金组织及力学性能的影响[J].稀有金属,2020,44(3): 242-248.


 


Liu W H, Luo H, Tan Y S, et al. Effects of crossrolling on microstructure and mechanical properties of 6016 aluminum alloy[J]. Chinese Journal of Rare Metals,2020,44(3): 242-248.


 


[12]黄朝文, 万明攀,杨明,. 固溶工艺对高强韧211Z.X铝合金组织和性能的影响[J].稀有金属,2019,43(8): 816-823.


 


Huang C W, Wang M P, Yang M, et al. Microstructure and mechanical performance of 211Z.X aluminum alloy with high strength & toughness under different solution process parameters[J]. Chinese Journal of Rare Metals,2019,43(8): 816-823.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9