网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧制变形对Al-Zn-Mg-Cu合金中S相破碎情况的影响
英文标题:Influence of rolling deformation on fragmentation of S phase in Al-Zn-Mg-Cu alloy
作者:李小刚1 闫亮明1 2    强1 安智涛1 
单位:1. 内蒙古工业大学 2. 内蒙古自治区轻金属材料重点实验室 
关键词:7055铝合金 S相 蛇形轧制 对称轧制 异步轧制 
分类号:TG339
出版年,卷(期):页码:2022,47(1):124-131
摘要:

 针对传统的对称轧制方式难以破碎AlZnMgCu合金中粗大S(Al2CuMg)相的问题,根据蛇形轧制变形区的受力特点,通过主应力法分析了变形区内受力最小区域的应力,并建立了7055铝合金在蛇形轧制过程中粗大S相变形的微观有限元模型。采用建立的有限元模型对对称轧制、异步轧制和蛇形轧制过程中7055铝合金中S相的应变进行了模拟,开展了轧制实验和对S相形貌进行观察,对有限元模型的准确性进行了验证。结果表明:微观有限元模型准确可靠;随着非对称因素的增加,板材心部S相的破碎程度增加,即蛇形轧制>异步轧制>对称轧制;蛇形轧制板材表层S相较心部的应变更大、破碎程度更严重。

 In view of the problems of difficulty for crushing the coarse S phase (Al2CuMg) in Al-Zn-Mg-Cu alloy by the traditional symmetric rolling method, according to the force characteristics of the snake rolling deformation zone, the stress in the region with the least force in the deformation zone was analyzed by the principal stress method, and the micro finite element model of coarse S phase deformation of 7055 aluminum alloy during the snake rolling process was established. Then, the strains of S phase in the 7055 aluminum alloy during the symmetric rolling, asynchronous rolling and snake rolling processes were simulated by the established finite element model, and the rolling experiment and S phase morphology observation were carried out to verify the diagnostic accuracy of the finite element model. The results show that the micro finite element model is accurate and reliable. With the increasing of asymmetric factors, the fragmentation degrees of S phase in the core of sheet increases, namely, snake rolling>asynchronous rolling>symmetric rolling. In addition, the S phase on the surface layer of sheet during the snake rolling has greater strain and are more severely broken than that of the core.

基金项目:
国家自然科学基金资助项目(51764043,11762014);内蒙古自治区科技创新引导项目(KCBJ2018017);内蒙古自治区高等学校“青年科技英才支持计划”(NJYT20A16);内蒙古自治区留学回区人员科技活动项目;内蒙古自然科学基金(2020MS05061)
作者简介:
作者简介:李小刚(1993-),男,硕士 E-mail:1753531985@qq.com 通信作者:闫亮明(1979-),男,博士,教授 E-mail:yanliangming@126.com
参考文献:

 [1]   张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271.


Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3): 257-271.

[2]   Wang W Y, Pan Q L, Wang X D, et al. Nonisothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultrahigh strength AlZnMgCu alloy[J]. Journal of Alloys and Compounds, 2020, 845: 1-19.

[3]   白云, 唐明.车体用挤压态Al6.5Zn1.55Mg0.25Cr0.1Zr合金晶粒取向及应力腐蚀性分析[J].锻压技术,2020,45(3):174-180.

Bai Y, Tang M. Analysis on grain orientation and stress corrosion for extruded Al6.5Zn1.55Mg0.25Cr0.1Zr alloy used in vehicle body[J]. Forging & Stamping Technology, 2020, 45(3):174-180.

[4]   Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloysSome recent developments[J]. Transactions Nonferrous Metals Society of China, 2014, 24: 2003-2017.

[5]   张新明, 韩念梅, 刘胜胆, 等. 7050铝合金厚板织构、拉伸性能及断裂韧性的不均匀性[J]. 中国有色金属学报, 2010, 20(2): 202-208.

Zhang X M, Han N M, Liu S D, et al. Inhomogeneity of texture, tensile property and fracture toughness of 7050 aluminum alloy thick plate[J]. Transactions Nonferrous Metals Society of China, 2010, 20(2): 202-208.

[6]   Xu D K, Birbilis N, Lashansky D, et al. Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150 optimization for corrosion resistance[J]. Corrosion Science, 2011, 53: 217-225.

[7]   Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an asrolled AlZnMgCu alloy: Part I [J]. Characterisation of Constituent Particles and Overheating Mater. Sci. Eng. A, 2012, 534: 234-243.

[8]   Liao Y G, Han X Q, Zeng M X, et al. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy[J]. Materials and Design, 2015, 66: 581-586.

[9]   Liu G, Zhang G J, Ding X D, et al. Dependence of fracture toughness on multiscale second phase particles in high strength Al alloys[J]. Materials Science and Technology, 2003, 19: 887-896.

[10]Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloysAn experimental survey and discussion[J]. Journal of the Electrochemical Society, 2005, 152: 140-151.

[11]Xu D K, Rometsch P A, Birbilis N. Improved solution treatment for an asrolled AlZnMgCu alloy: Part I [J]. Characterisation of Constituent Particles and Overheating Mater. Sci. Eng. A, 2012, 534: 234-243.

[12]Li N K, Cui J Z. Microstructural evolution of high strength 7B04 ingot during homogenization treatment[J]. Transactions of Nonferrous Metals Society of China, 2008: 769-737.

[13]Elsner J H, Kvam E P, Grandt A F, et al. Modeling and microstructure analysis of fatigue initiation life extension by reductions in microporosity [J]. Metallurgical & Materials Transactions A, 1997, 28: 1157-1167.

[14]Zuo Y B, Xing F U, Cui J Z, et al. Shear deformation and plate shape control of hotrolled aluminium alloy thick plate prepared by asymmetric rolling process [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2220-2225.

[15]Ma C Q, Hou L G, Zhang J S, et al. Experimental and numerical investigations of the plastic deformation during muftipass asymmetric and symmetric rolling of highstrength aluminum alloys [J]. Materials Science Forum, 2014,794-796: 1157-1162.

[16]Zhang T, Wu Y X, Gong H, et al. Bending analysis and control of rolled plate during snake hot rolling[J]. Journal of Central South University, 2015, 22: 2463-2469.

[17]Fu Y, Xie S S, Xiong B Q, et al. Effeet of rolling parameters on plate curvature during snake rolling[J]. Journal of Wuhan University of TechnologyMaterials Science Edition, 2012, 27(2): 247- 251.

[18]付垚, 谢水生, 熊柏青. 主应力法计算蛇形轧制的轧制力[J]. 塑性工程学报, 2010,17(6): 103-109.

Fu Y, Xie S S, Xiong B Q. Calculation of rolling force in snake rolling by slab method[J]. Journal of Plasticity Engineering, 2010,17(6): 103-109.

[19]赵云龙. 粗大SAl2CuMg对强塑性变形2024铝合金力学性能的影响[J]. 热加工工艺, 2015, 44(12): 117-119.

Zhao Y L. Effect of coarse SAl2CuMg phase on mechanical property of severe plastic deformed 2024 Al alloy[J]. Hot Working Technology, 2015, 44(12): 117-119.

[20]刘禹门. AlCuMg合金中位错与S相的相互作用[J].兵器材料科学与工程,2005, 28(5):1-4.

Liu Y M. Interaction dislocation and Sphase precipitates in AlCuMg alloy [J]. Ordnance Material Science and Engineering, 2005, 28(5):1-4.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9