网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于热模锻压力机曲轴锻造自动化生产线的时序设计与优化
英文标题:Time sequence design and optimization on automatic production line for crankshaft forging based on hot die forging press
作者:    刘庆生         曾子豪 李朝昆 
单位:北京机电研究所有限公司 
关键词:锻造 自动化生产线 机器人 时序 节拍 
分类号:TG316
出版年,卷(期):页码:2022,47(1):140-145
摘要:

 为了提高锻造自动化生产线的设计合理性及生产效率,在设计阶段对生产时序进行合理优化十分重要。以某企业热模锻压力机曲轴锻造自动化生产线的设计为例,在对生产线的主机设备、目标产品、机器人配置等整体规划的基础上,对该生产线生产时序进行初步设计,找出了限制提升生产节拍的瓶颈节点,并进一步通过时序拆分、时序分析与整合优化的方法,实现了该生产线某典型曲轴产品的动作规划,使生产节拍由43 s提升至20 s,保证了生产线的高效率生产。专业软件的仿真结果证明,在满足生产线功能要求的基础上,设备无干涉、机器人运行平稳,优化后的时序更为合理、高效。

 In order to improve the design rationality and production efficiency of forging automatic production line, it is very important to optimize the production time sequence in the design stage. For the design on the automatic production line for crankshaft forging of hot die forging press in an enterprise, based on the overall planning of main engine, target products and robot configuration for the production line, the production time sequence of production line was preliminarily designed, and the bottleneck nodes that limited the improvement of the production beat were found. Then, the action planning of a typical crankshaft product in the production line was realized by the methods of time sequence splitting, time sequence analysis and integration optimization, and the production beat was reduced from 43 s to 20 s, which ensured the high efficiency production of the production line. Professional software simulation results show that on the basis of meeting the functional requirements for the production line, the equipment has no interference, the robot runs smoothly, and the optimized time sequence is more reasonable and efficient.

基金项目:
工业强基工程(TC180A3Y1/18)
作者简介:
作者简介:张 南(1995-),男,硕士研究生 E-mail:zh_nan95@outlook.com 通信作者:刘庆生(1979-),男,硕士,研究员 E-mail:13701091564@163.com
参考文献:

 [1]   中国公路学报编辑部. 中国汽车工程学术研究综述·2017[J].中国公路学报,2017,30(6):1-3.


Editorial Department of China Journal of Highway and Transport. A summary of academic research on Chinese automotive engineering·2017[J].China Journal of Highway and Transport, 2017,30(6):1-3.

[2]   孙连胜, 宁汝新,王新永. 虚拟制造中生产线可视化设计[J].北京理工大学学报,2002,22(1):32-35.

Sun L S, Ning R X, Wang X Y. Visual design of production line in virtual manufacturing[J]. Journal of Beijing Institute of Technology,2002,22(1):32-35.

[3]   张南, 刘庆生,曾琦,等.基于产品系列型谱的锻造自动化生产制造系统设计方法[J]. 锻压技术,2020, 45(12):130-135.

Zhang N, Liu Q S, Zeng Q, et al. Design method of forging automated manufacturing system based on product series profile[J]. Forging & Stamping Technology, 2020, 45(12):130-135.

[4]   贺小毛, 崔磊,翟月雯,等.自动化锻造生产线实时数据采集和分析系统[J].锻压技术,2021,46(2):14-18.

He X M, Cui L, Zhai Y W, et al. Realtime data acquisition and analysis system of automated forging production line[J]. Forging & Stamping Technology, 2021,46(2):14-18.

[5]   万胜狄, 王运赣,沈元彬,等.锻造机械化与自动化[M].北京:机械工业出版社,1983.

Wan S D, Wang Y G, Shen Y B, et al. Forging Mechanization and Automation [M]. Beijing: China Machine Press, 1983.

[6]   陈华奎, 付为国,顾潇宇,等.基于PLC的多工位热模锻自动上料系统设计[J]. 锻压技术,2021,46(10):25-30.

Chen H K, Fu W G, Gu X Y, et al. Design of automatic feeding system for multiposition hot die forging based on PLC[J]. Forging & Stamping Technology,2021,46(10):25-30.

[7]   潘成海, 曾琦,董旭刚,等. 汽车转向节精锻工艺设计与锻造主机选型[J].锻压技术, 2021, 46(8):26-31.

Pan C H, Zeng Q, Dong X G, et al. Precision forging process design of automobile steering knuckle and forging main engine selection[J].Forging & Stamping Technology, 2021, 46(8):26-31.

[8]   李忠民, 卢喜,刘雨耕.热模锻压力机[M].北京:机械工业出版社,1990.

Li Z M, Lu X, Liu Y G. Hot Die Forging Press[M]. Beijing: China Machine Press,1990.

[9]   时文亮. TR公司轿车曲轴生产线节拍优化研究[D]. 济南:山东大学, 2014.

Shi W L. Research on Beat Optimization of TR Company Car Crankshaft Production Line[D]. Jinan: Shandong University, 2014.

[10]邵晋, 变速器装配线的节拍提升及其平衡改善研究[D].上海:上海交通大学.

Shao J. Study on Upgrading the Beat of Transmission′s Assembly Lines and Improvement of the Balance[D].Shanghai: Shanghai Jiao Tong University, 2014.

[11]李智. 混合品种装配线平衡与排序优化技术研究[D].济南:山东大学,2013.

Li Z. Balancing and Sequencing Optimization of Mixedmodel Assembly Lines[D]. Jinan: Shandong University,2013.

[12]郭安庆. 基于机器人的柴油机气缸盖堆焊技术开发[D]. 镇江:江苏科技大学,2010.

Guo A Q. Development of Building Up Technology for Diesel Engine Cylinder Head Based on Robot[D]. Zhenjiang: Jiangsu University of Science and Technology, 2010.

[13]胡斯楞. 铝合金空间焊缝的机器人焊接离线编程及焊接工艺[D]. 呼和浩特:内蒙古工业大学, 2018.

Hu S L. Robot Welding Offline Programming and Welding Process of Aluminum Alloy Space Welds[D]. Hohhot: Inner Mongolia University of Technology, 2018.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9