网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
仿蜻蜓翅脉的车门内板加强筋多目标优化设计
英文标题:Multi-objective optimization design on stiffeners for automotive door inner panel based on dragonfly wing vein structure
作者:王君瑶 徐峰祥 华林 
单位:武汉理工大学 
关键词:车门内板 加强筋 蜻蜓翅脉 仿生设计 多目标拓扑优化 
分类号:TB17
出版年,卷(期):页码:2022,47(2):30-41
摘要:

 提出了一种车门内板加强筋布局优化仿生设计思路。结合单一车门内板在下沉工况、侧向柱碰撞、抗凹工况、一阶模态这4种工况下的拓扑优化结果,基于折衷规划法对车门内板进行多目标拓扑优化;结合多目标拓扑优化结果与蜻蜓翅脉优良结构,对车门内板的加强筋进行仿生设计;结合灰色关联度分析法与层次分析法,确定了多目标优化函数中各工况的权重比。研究结果表明:车门质量减轻了2.7%,并且在同样的载荷下,车门抗凹位移减少了37.6%,最大应力值减少了1.4%;下沉位移减少了27.1%,最大应力值减少了36.8%,侧向柱碰撞侵入量减少了1.5%,一阶固有频率增加了3.7%。设计结果为车门内板加强筋布局设计提供了新思路,一定程度上具有切实的工程应用价值。

 A bionic design idea of optimizing the layout for the stiffener of automotive door inner panel was proposed, and combining the topology optimization results of a single automotive door inner panel under four conditions, such as sink condition, lateral column collision, anti-dent condition and first-order modal, the multi-objective topology optimization for the automotive door inner panel was carried out based on compromise planning method. Then, combining the multi-objective topology optimization results and the excellent structure of dragonfly wing vein, the bionic design on the stiffener of the automotive door inner panel was carried out, and the weight ratio of each condition in the multi-objective optimization function was determined by gray correlation analysis method and hierarchical analysis method. The research results show that the automotive door mass is reduced by 2.7%. Furthermore, Under the same load,the anti-dent displacement of the automotive door is reduced by 37.6%, the maximum stress value is reduced by 1.4%, the sink displacement is reduced by 27.1%, the maximum stress value is reduced by 36.8%, the intrusion of lateral column collision is reduced by 1.5%, and the first-order inherent frequency is increased by 3.7%. The design results provide new ideas for the design on the stiffener layout of the automotive door inner panel and have practical engineering application value to some extent.

基金项目:
国家自然科学基金资助项目(51975438);高等学校学科创新引智计划(B17034)
作者简介:
作者简介:王君瑶(1996-),女,硕士研究生,E-mail:wjy@whut.edu.cn;通信作者:徐峰祥(1985-),男,博士,副教授,E-mail:xufx@whut.edu.cn
参考文献:

[1]Alaimo A Orlando CValvano S. An alternative approach for modal analysis of stiffened thin-walled structures with advanced plate elements[J]. European Journal of Mechanics-A/Solids2019, 77:103820.


[2]Zhang HDing X H, Dong X H,et al. Optimal topology design of internal stiffeners for machine pedestal structures using biological branching phenomena[J]. Structural Multidisciplinary Optimization2018, 57 (6):2323-2338.


[3]Kesel A B Philippi U Nachtigall W. Biomechanical aspects of the insect wing: an analysis using the finite element method[J]. Computers in Biology & Medicine1998, 28 (4):423-437.


[4]马建峰, 陈五一,赵岭. 基于蜻蜓膜翅结构的飞机加强框的仿生设计[J]. 航空学报,2009,30 (3):562-569.


Ma J F Chen W YZhao L. Bionic design of aircraft reinforced frame based on structure of dragonfly wing [J]. Acta Aeronautica et Astronautica Sinica 2009, 30 (3):562-569.


[5]李乐, 曾辉,郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报,2013, 37 (7):691-698.


Li L Zeng HGuo D L. Leaf venation functional traits and their ecological significance [J]. Chinese Journal of Plant Ecology 2013, 37 (7):691-698.


[6]Ruan Y Y, Konstantinov A S,Shi G S,et al. The jumping mechanism of flea beetles (coleoptera, chrysomelidae, alticini),its application to bionics and preliminary design for a robotic jumping leg[J]. ZooKeys,2020, 915:87-105.


[7]唐涛, 张维刚, 陈鼎, . 侧面柱碰撞条件下轿车车门抗撞性优化设计[J]. 中国机械工程, 2016, 27(2): 278-283.


Tang T, Zhang W G, Chen D, et al. Crashworthiness optimal design of automotive side door under pole side impact [J]. China Mechanical Engineering, 2016, 27(2): 278-283.


[8]More K C, Patil G M, Belkhede A A. Design and analysis of side door intrusion beam for automotive safety[J]. Thin-Walled Structures, 2020,1531-3:106788.


[9]Sharma S K, Sahu A K, Bhosale S. Multidisciplinary design optimization of automobile tail door[A]. SAE Technical Paper[C]. Warrendale, PA: SAE International,2017.


[10]易辉成, 杨旭静, 王一骏. 基于多工况的车门结构多目标优化设计方法研究[J]. 微计算机信息, 2012, 28(4):87-89.


Yi H C, Yang X Z, Wang Y J. Research on mmulti-working-conditions and multi-objective optimization for vehicle door structure [J]. Microcomputer Information, 2012, 28(4):87-89.


[11]孙芳芳. 浅议灰色关联度分析方法及其应用[J]. 科技信息, 2010, (17): 880-882.


Sun F F. Gray correlation analysis and its application[J]. Science & Technology Information, 2010, 17: 880-882.


[12]Saaty T L. The Analytic Hierarchy Process[M]. New York: Mcgraw-Hill, 1980.


[13]Jongerius S RLentink D. Structural analysis of a dragonfly wing[J]. Experimental Mechanics2010, 50(9) 1323-1334.


[14]Rajabi H Rezasefat MDarvizeh Aet al. A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings[J]. Applied Physics A,2016, 122:19.


[15]范文杰, 范子杰,苏瑞意. 汽车车架结构多目标拓扑优化方法研究[J]. 中国机械工程,2008, 1912):1505-1508.


Fan W J Fan Z J Su R Y. Research on multi-objective topology optimization on bus chassis frame [J]. China Mechanical Engineering 2008, 1912): 1505-1508.


[16]刘思峰, 杨英杰,吴利丰. 灰色系统理论及其应用[M].7.北京:科学出版社,2014.


 


Liu S F, Yang Y J,Wu L F. Gray System Theory and Its Applications[M]. The 7th edition. Beijing: Science Publishers,2014.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9