网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
加热方式对镁合金板材温渐进成形性能及力学性能的影响
英文标题:Influence of heating method on formability and mechanical properties for magnesium alloy sheet in warm incremental forming
作者:郑志洋 陈宇祥 廖娟 
单位:福州大学 
关键词:镁合金 温渐进成形 加热方式 成形性能 力学性能 
分类号:TG306
出版年,卷(期):页码:2022,47(2):49-55
摘要:

 不同加热方式会影响板材的温度分布,使板材不同位置出现温差,造成材料内部出现性能差异。针对上述问题,采用碳纤维电热管和热空气这两种整体加热方式对镁合金板材进行加热,通过成形变角度圆锥件和恒定成形角的方锥件来研究加热方式和成形温度对镁合金板材成形性能及其成形零件的力学性能的影响。结果表明:在150~275 ℃成形温度范围内,镁合金板材的成形性能随着成形温度的升高而增强;当成形温度为250 ℃时,镁合金板材具有较好的成形性能,且其成形零件也获得了最优的力学性能;在相同成形温度下,采用碳纤维电热管加热时镁合金板材具有更好的成形性能,其成形零件也具有更好的力学性能。

 The temperature distribution of sheet is affected by different heating methods. Meanwhile, the temperature difference appears in the different positions of sheet,which resulting in material internal performance difference. In view of the above problems, the magnesium alloy sheets were heated by two overall heating methods of carbon fiber electric pipe heating and hot air heating, and the influences of heating methods and forming temperature on the formability of magnesium alloy sheet and the mechanical properties of its formed parts were studied by forming variable-angle cone parts and square cone parts with constant forming angle. The results show that in the forming temperature range of 150-275 ℃, the formability of magnesium alloy sheet is enhanced with the increasing of forming temperature. When the forming temperature is 250 ℃, the magnesium alloy sheet has better formability, and its formed parts also obtain the best mechanical properties. At the same forming temperature, the magnesium alloy sheet heated by carbon fiber electric pipe heating has better formability, and its formed parts also have better mechanical properties. 

基金项目:
国家自然科学基金资助项目(51805087);福建省自然科学面上基金(2018J01761, 2018J01764)
作者简介:
作者简介:郑志洋(1994-),男,硕士,E-mail:n180227088@fzu.edu.cn;通信作者:廖娟(1984-),女,博士,教授,E-mail:jliao@fzu.edu.cn
参考文献:

[1]Kleiner M, Geiger M, Klaus A. Manufacturing of lightweight components by metal forming [J]. CIRP Annals-Manufacturing Technology, 2003, 52(2): 521-542.


[2]Billur E, Altan T. Challenges in forming advanced high strength steels[A]. New Developments in Sheet Metal Forming [C]. Sttutgart2010.


[3]Wong T W, Hadadzadeh A, Wells M A. High temperature deformation behavior of extruded AZ31B magnesium alloy [J]. Journal of Materials Processing Technology, 2017, 251(36): 360-368.


[4]Pollock M T. Weight loss with magnesium alloys [J]. Science, 2010, 328(5981):986-987.


[5]Kulekci M K. Magnesium and its alloys applications in automotive industry [J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(9-10): 851-865.


[6]Mordike B LEbert T. Magnesium: Properties-applications-potential [J]. Materials Science and Engineering: A, 2001, 3021: 37-45.


[7]Agnew S R, Mehrotra P, Lillo T M, et al. Texture evolution of five wrought magnesium alloys during route a equal channel angular extrusion: experiments and simulations [J]. Acta Materialia, 2005, 53(11): 3135-3146.


[8]Ambrogio G, Filice L, Manco G L. Warm incremental forming of magnesium alloy AZ31 [J]. CIRP Annals-Manufacturing Technology, 2008, 57(1): 257-260.


[9]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures [J]. CIRP Annals-Manufacturing Technology, 2006, 55(2): 793-816.


[10]Emmens W C, Sebastiani G, Boogaard A H V D. The technology of incremental sheet forming-A brief review of the history[J]. Journal of Materials Processing Technology, 2010, 210(8): 981-997.


[11]Malhotra R, Xue L, Belytschko T, et al. Mechanics of fracture in single point incremental forming [J]. Journal of Materials Processing Technology, 2012, 212(7): 1573-1590.


[12]史鹏涛, 李言, 杨明顺,. 液体介质加热的镁合金板料热渐进成形极限研究 [J]. 机械强度, 2018, 40(2): 412-417.


Shi P T, Li Y, Yang M S, et al. Research on the forming limit of incremental thermal forming of magnesium alloy sheet heated by liquid medium [J]. Journal of Mechanical Strength, 2018, 40(2): 412-417.


[13]张三, 唐桂华, 李克杰,. 基于响应曲面法的AZ31B镁合金油浴加热渐进成形性研究 [J]. 锻压技术, 2020, 45(5): 87-94.


Zhang S, Tang G H, Li K J, et al. Study on formability of incremental forming by oil bath heating for AZ31B magnesium alloy based on response surface method [J]. Forging & Stamping Technology, 2020, 45(5): 87-94.


[14]Ji Y H, Park J J. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature [J]. Journal of Materials Processing Technology, 2008, 201(1-3): 354-358.


[15]André L, Kurz G, José V H, et al. Experimental study on incremental sheet forming of magnesium alloy AZ31 with hot air heating [J]. Procedia Manufacturing, 2018, 15: 1192-1199.


[16]Duflou J R, Callebaut B, Verbert J, et al. Laser assisted incremental forming: Formability and accuracy improvement [J]. CIRP Annals-Manufacturing Technology, 2007, 56(1): 273-276.


[17]Duflou J R, Callebaut B, Verbert J, et al. Improved SPIF performance through dynamic local heating [J]. International Journal of Machine Tools & Manufacture, 2008, 48(5): 543-549.


[18]Wang Z H, Cai S, Chen J. Experimental investigations on friction stir assisted single point incremental forming of low-ductility aluminum alloy sheet for higher formability with reasonable surface quality [J]. Journal of Materials Processing Technology, 2020, 277: 116488.


[19]Xu D K, Wu W C, Malhotra R, et al. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming [J]. International Journal of Machine Tools & Manufacture, 2013, 73(10): 37-46.


[20]Fan G Q, Gao L, Hussain G, et al. Electric hot incremental forming: A novel technique [J]. International Journal of Machine Tools & Manufacture, 2008, 48(15): 1688-1692.


[21]Ambrogio G, Filice L, Gagliardi F. Formability of lightweight alloys by hot incremental sheet forming [J]. Materials & design, 2012, 34(2): 501-508.


[22]Hussain G, Gao L, Dar N U. An experimental study on some formability evaluation methods in negative incremental forming [J]. Journal of Materials Processing Technology, 2007, 186(1-3): 45-53.


[23]Hussain G, Gao L. A novel method to test the thinning limits of sheet metals in negative incremental forming [J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 419-435.


[24]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


[25]张青来, 肖富贵, 郭海玲,. 各向异性对镁合金板材渐进成形的影响及微观组织演变 [J]. 中国有色金属学报, 2009, 19(5): 800-807.


Zhang Q L, Xiao F G, Guo H L, et al. Effect of anisotropy on incremental forming of magnesium alloy sheet and its microstructure evolution [J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5): 800-807.


[26]张三, 唐桂华,沈建冬,等. 成形温度对镁合金温热渐进成形微观组织及断口形貌的影响 [J]. 塑性工程学报,2021, 28(3): 90-97.


 


Zhang S, Tang G H, Shen J D, et al. Influence of forming temperature on microstructure and fracture morphology of magnesium alloy during warm incremental sheet forming [J]. Journal of Plasticity Engineering, 2021, 28(3): 90-97.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9