网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻机用先导阀芯驱动伺服阀动态特性AMESim仿真分析
英文标题:AMESim simulation analysis on dynamic characteristics of servo valve driven by pilot value core in forging machine
作者:徐勇光 刘海瑞 王东 
单位:周口职业技术学院 河南师范大学  河南龙腾锻压机械设备有限公司 
关键词:先导阀芯 比例阀 流量控制 AMESim仿真 阶跃响应 稳态误差 
分类号:TP273
出版年,卷(期):页码:2022,47(2):167-171
摘要:

 为了实现液压机用伺服阀的流量精确控制,开发了一种以电驱丝杠推动先导阀芯的伺服阀,以达到高精度控制的效果和显著减弱液压引起的冲击力作用。先导进液阀与主进液阀之间保持相互嵌套的状态,具有反馈机械位置信息的功能。并利用AMESim仿真平台对其进行仿真分析。阶跃响应特性表明:到达0.04 s时,主进液阀芯开始关闭,在0.1 s时主阀出口流量达到282 L·min-1,设计满足性能要求。启闭特性表明:先导阀芯开启后,主进液阀芯相对先导进液阀芯速度更慢,引起了明显滞后,之后达到完全开启状态。级间位置匹配特性表明:先导进液阀芯关闭,之后主进液阀芯发生跟随关闭,同样会产生静差。

 In order to improve the precision control of flow for the servo valve used in forging hydraulic press, a servo valve with an electric drive screw driving pilot valve core was developed to achieve high precision control effect and significantly reduce the impact force caused by hydraulic pressure, and the pilot inlet valve and the main inlet valve were kept in a nested state to have feedback function of mechanical position information. Then, the AMESim simulation platform was used for simulation analysis. The step response characteristics show that the main inlet valve core closes when it reaches 0.04 s, and the main valve outlet flow rate reaches 282 L·min-1 when it reaches 0.1 s, which meet the performance requirements. The opening and closing characteristics show that after the pilot valve core is opened, the speed of the main inlet valve core is slower than that of the pilot inlet   valve core, causing obvious lag, and then reaching the fully open state. The characteristics of position matching between stages indicate that the pilot inlet valve core closes, and then the main inlet valve core follows and closes, which also produces static difference.

基金项目:
河南省科技厅基金项目(192102210173)
作者简介:
作者简介:徐勇光(1978-),男,硕士,讲师,E-mail:tr13511us06@126.com
参考文献:

[1]王立新, 赵丁选, 刘福才, . 电液比例伺服力加载自抗扰控制[J]. 机械工程学报, 2020, 56(18): 216-225.


Wang L X, Zhao D X, Liu F C, et al.Active disturbance rejection control for electro-hydraulic proportional servo force loading[J]. Journal of Mechanical Engineering, 2020, 56(18): 216-225.


[2]鲁苗, 陈柏金, 柳龙, . 泵控锻造液压机控制系统研究[J]. 锻压技术, 2021, 46(7): 140-145.


Lu M, Chen B J, Liu L, et al. Research on control system of pump-controlled forging hydraulic press [J]. Forging & Stamping Technology, 2021, 46(7): 140-145.


[3]陶翠霞, 赵鹏, 孙波. 多缸液压机的滑模变结构智能同步控制[J]. 锻压技术, 2021, 46(6): 142-149.


Tao C X, Zhao P, Sun B. Intelligence synchronous control on sliding mode variable structure for multi-cylinder hydraulic press [J]. Forging & Stamping Technology, 2021, 46(6): 142-149.


[4]崔刚, 朱学彪, 李扬, . 基于AMESim冲模机快速闭式液压系统的仿真与研究[J]. 机床与液压, 2021, 49(1): 119-123.


Cui G, Zhu X B, Li Y, et al. Simulation and research of fast closed hydraulic system of pressing die based on AMESim [J]. Machine Tool & Hydraulics, 201,49(1):119-123.


[5]华林, 叶德金, 汪小凯, . 双伺服驱动高速精冲模机主传动系统的运动规划[J].华中科技大学学报:自然科学版, 2018, 46(4):6-11, 34.


Hua L, Ye D J, Wang X K, et al. Motion planning of main drive system of high speed fine blanking press by double servo drive [J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2018,46(4):6-11, 34.


[6]陈罡, 李文龙, 董祥义, . 100 MN橄榄式缠绕液压机结构设计与特性研究[J]. 锻压技术, 2021, 46(2): 166-172.


Chen G, Li W L, Dong X Y, et al. Structural design and characteristic research of 100 MN olivary winding hydraulic press [J]. Forging & Stamping Technology, 2021, 46(2): 166-172.


[7]郭玉玺, 张利. 大型模锻液压机的混合动力驱动系统[J].锻压技术, 2020, 45(10): 124-129.


Guo Y X, Zhang L. Hybrid power drive system of large die forging hydraulic press [J]. Forging & Stamping Technology, 2020, 45(10): 124-129.


[8]廖瑶瑶, 廉自生, 袁红兵, . 液压支架用大流量换向阀振动冲击分析[J]. 液压与气动, 2015, (5): 79-82104.


Liao Y Y, Lian Z S, Yuan H B, et al. Shock and vibration analysis for the large flow directional valve used on hydraulic supports[J]. Chinese Hydraulics & Pneumatics, 2015, (5): 79-82104.


[9]Muller M T, Fales R. Design and analysis of a two-stage poppet valve for flow control[J]. International Journal of Fluid Power, 2008, 9(1): 17-26.


[10]Samakwong T, Assawinchaichote W. PID controller design for electro-hydraulic servo valve system with genetic algorithm[J]. Procedia Computer Science, 2016, 86: 91-94.


[11]Suzuki K, Urata E. Development of a water hydraulic pressure-compensated flow control valve[J]. International Journal of Fluid Power, 2008, 9(3): 25-33.


[12]张勇, 黄家海, 权龙, . Valvistor电液比例流量阀稳定性及特性分析[J]. 振动、测试与诊断, 2016, 36(2): 340-345.


Zhang Y, Huang J H, Quan L, et al. Stability and characteristic study of the Valvistor valve [J]. Journal of VibrationMeasurement & Diagnosis, 2016, 36(2): 340-345.


[13]李胜, 阮健, 孟彬. 二维电液比例换向阀动态特性及稳定性分析[J]. 机械工程学报, 2016,52 (2): 202-212.


Li S, Ruan J, Meng B. Two-dimensional electro-hydraulic proportional directional valve[J]. Journal of Mechanical Engineering, 2016,52 (2): 202-212.


[14]刘可, 廖瑶瑶, 廉自生, . 矿用大流量比例阀动态特性建模与仿真研究[J]. 液压与气动, 2020,(1): 112-117.


Liu K, Liao Y Y, Lian Z S, et al. Dynamic modeling and simulation of large-flow proportional valve for mining [J]. Chinese Hydraulics & Pneumatics, 2020,(1): 112-117.


 


[15]Woodacre J K, Bauer R J, Irani R. Hydraulic valve-based active-heave compensation using a model-predictive controller with non-linear valve compensations[J]. Ocean Engineering, 2018, 152: 47-56.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9