网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
10钢热变形过程动态再结晶行为
英文标题:Dynamic recrystallization behavior for 10 steel during thermal deformation process
作者:李超群 张立文 李飞 张驰 毛培刚 
单位:大连理工大学 
关键词:10钢 动态再结晶 临界应变 动力学模型 晶粒尺寸模型 
分类号:TG142.1
出版年,卷(期):页码:2022,47(2):207-212
摘要:

 在Gleeble-1500热模拟实验机上进行单道次压缩实验,试样的尺寸为Φ10 mm×15 mm,压缩变形温度为900~1200 ℃,应变速率为0.01~10 s-1,压缩量为63.2%(真应变为1.0)。结果表明:10钢在高温单道次压缩实验过程中应力随着变形温度的升高而降低,随着应变速率的升高而升高,且在热变形过程中发生了动态再结晶现象。在此研究基础上,得到了10钢的动态再结晶临界应变模型;根据真应力-真应变曲线,计算动态再结晶体积分数,构建了10钢动态再结晶动力学模型;根据金相统计晶粒尺寸,建立了10钢动态再结晶晶粒尺寸模型。引入平均相对误差绝对值(AARE),验证10钢动态再结晶晶粒尺寸方程的拟合效果,得到AARE=6.32%,说明拟合效果良好。

 For 10 steel, a single-pass compression test was carried out on the thermal simulator Gleeble-1500,and the size of sample was Φ10 mm×15 mm. The compression deformation temperatures were 900-1200 ℃, the strain rates were 0.01-10 s-1, and the compression amount was 63.2% (the true strain was 1.0). The results show that the stress of 10 steel decreases with the increasing of deformation temperature and increases with the increasing of strain rate during the high-temperature single-pass compression test,and the dynamic recrystallization phenomenon occurres during the thermal deformation of 10 steel. On the basis of this research, the critical strain model of dynamic recrystallization for 10 steel was obtained, according to the true stress-true strain curves,the dynamic recrystallization volume fractions were calculated, and the recrystallization kinetic model of 10 steel was constructed. Furthermore, the dynamic recrystallization grain size model of 10 steel was established,according to the grain sizes measured by the metallographic photos. The average absolute relative error (AARE) was introduced to verify the fitting effect of dynamic recrystallization grain size equation for 10 steel, and the value of AARE was 6.32%, indicating that the fitting effect was good.

基金项目:
国家重点研发计划(2019YFA0705304);辽宁省自然科学基金资助项目(2019KF0506)
作者简介:
作者简介:李超群(1996-),男,硕士研究生,E-mail:992742661@qq.com;通信作者:张立文(1962-),男,博士,教授,E-mail:commat@mail.dlut.edu.cn
参考文献:

 [1]刘洁, 张志红. 铸态 Mn18Cr18N 钢轧制热压缩实验分析[J]. 锻压技术,202146(1)197-201.


Liu J, Zhang Z H. Experimental analysis of rolling hot compression for as-cast Mn18Cr18N steel[J]. Forging & Stamping Technology, 2021, 46(1):197-201.


[2]Li Y J, Zhang Y, Chen Z Yet al. Hot deformation behavior and dynamic recrystallization of GH690 nickel-based superalloy[J]. Journal of Alloys and Compounds, 2020, 847: 156507.


[3]李立新, 肖麟,郑良玉,等. 低碳贝氏体钢的动态再结晶行为[J]. 金属热处理,201843(4)38-43.


Li L X, Xiao L, Zheng L Yet al. Dynamic recrystallization behavior of low carbon bainitic steel[J]. Heat Treatment of Metals, 201843(4): 38-43.


[4]Li C M, Huang L, Zhao M Jet al. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling[J]. Materials Science & Engineering A, 2020, 797: 139925.


[5]孔晓寒, 陈慧琴,刘建生,等. 铸态Q345E钢的本构方程及动态再结晶行为[J]. 锻压技术,202045(11)199-204.


Kong X H, Chen H Q, Liu J Set al. Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel[J]. Forging & Stamping Technology, 202045(11): 199-204.


[6]王忠堂, 邓永刚,张士宏. 基于加工硬化率的高温合金Inconel 690动态再结晶临界条件[J]. 材料热处理学报,2014,35(7)193-197.


Wang Z T, Deng Y G, Zhang S H. Critical conditions of dynamic recrystallization for super-alloy Inconel 690 based on work hardening rate[J]. Transactions of Materials and Heat Treatment, 201435(7): 193-197.


[7]Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science & Engineering A, 2002, 3221-2: 43-63.


[8]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136.


[9]王凌浩, 辛选荣,许丁,等. 50SiMnVB合金钢动态再结晶临界模型的建立[J]. 热加工工艺,202049(17)53-56.


Wang L H, Xin X R, Xu Det al. Establishment of dynamic recrystallization critical model of 50SiMnVB alloy steel[J]. Hot Working Technology, 202049(17): 53-56.


[10]程晓农, 桂香,罗锐,等. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报,201933(11)1775-1781.


Cheng X N, Gui X, Luo Ret al. Constitutive equation and dynamic recrystallization behavior of 316L austenitic stainless steel for nuclear power equipment[J]. Materials Reports, 201933(11): 1775-1781.


[11]Jonas J J, Quelennec X, Jiang Let al. The Avrami kinetics of dynamic recrystallization[J]. Acta Materialia, 2009, 57: 2748-2756.


[12]刘娟, 李居强,崔振山,等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测[J]. 金属学报,201248(12)1510-1519.


Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication[J]. Acta Metallurgica Sinica, 2012, 48(12): 1510-1519.


[13]Zhao H T, Qi J J, Su Ret al. Hot deformation behaviour of 40CrNi steel and evaluation of different processing map construction methods[J]. Journal of Materials Research and Technology, 2020, 9(3): 2856-2869.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9