网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2124铝合金热成形本构模型及工艺分析
英文标题:Constitutive model and process analysis on thermoforming of 2124 aluminum alloy
作者:郭元恒 谢延敏 王东涛 赵江波 杜凌峰 
单位:西南交通大学 
关键词:2124铝合金 热拉伸 本构模型 应变速率 伸长率 
分类号:TG146.2
出版年,卷(期):页码:2022,47(2):213-219
摘要:

 为了获得2124铝合金热变形下的力学行为,在温度为350~450 ℃、应变速率为0.001~0.1 s-1的变形条件下进行热拉伸实验,获得了材料的应力-应变曲线,其结果表明:峰值应力随着温度的升高和应变速率的降低而减小;温度是影响伸长率的主要因素,且低应变速率下,具有较小的均匀伸长率。为精确地描述材料热变形下的变形行为,建立了粘塑性本构模型,并采用遗传算法求得该本构模型的材料参数,结果表明模型的预测值与实验值吻合程度较高。基于已建立的本构模型开发了用户材料子程序VUMAT,建立了双C件有限元模型,并利用ABAQUS软件对2124铝合金热成形过程进行了仿真分析。基于正交实验,研究了温度、冲压速度、压边力和摩擦因数对双C件成形后最大减薄率的影响,使用极差分析方法获得了较优的成形工艺条件,并通过实验验证了该工艺条件下的成形结果。

  In order to obtain the mechanical behavior of 2124 aluminum alloy under thermal deformation, the thermal tensile test was conducted at the temperature of 350-450 ℃ and the strain rate of 0.001-0.1 s-1, and the stress-strain curves of material were obtained. The results show that the peak stress decreases with the increasing of temperature and the decreasing of strain rate, the temperature is a main factor affecting elongation rate, and there is a smaller uniform elongation rate at the low strain rate. In order to accurately describe the deformation behavior of the material under thermal deformation, a viscoplastic constitutive model was established, and material parameters of the constitutive model were obtained by genetic algorithm. The results show that the predicted value of the model is in good agreement with the experimental value. Based on the established constitutive model, the user material subroutine VUMAT was developed, the finite element model of double C part was established, and the thermoforming process of 2124 aluminum alloy was simulated and analyzed by software ABAQUS. Based on orthogonal experiment, the influences of temperature, stamping speed, blank holder force and friction coefficient on the maximum thinning rate of double C part after forming were studied, the better forming process condition was obtained by the range analysis method, and the results of forming under the process conditions were verified by experiment.

基金项目:
四川省国际创新合作项目(2020YFH0078) ;四川省科技计划资助项目(2019YFG0313)
作者简介:
作者简介:郭元恒(1995-),男,硕士研究生,E-mail:gyh@my.swjtu.edu.cn;通信作者:谢延敏(1975-),男,博士,副教授,E-mail:xie_yanmin@home.swjtu.edu.cn
参考文献:

[1]刘兵, 彭超群,王日初,等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报,201020(9)1705-1715.


Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715.


[2]Zheng K L, Politis D J, Wang L, et al. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components[J]. International Journal of Lightweight Materials and Manufacture, 201812: 55-80.


[3]齐国栋. 2124铝合金固溶时效对组织和性能的影响[D]. 哈尔滨:哈尔滨工业大学,2009.


Qi G D. Effects of Solution and Aging on Structure and Properties of 2124 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology,  2009.


[4]王昌臻, 潘清林,何运斌,等. 2124铝合金热扎厚板的热处理制度[J]. 中南大学学报:自然科学版,200738(3)386-373.


Wang C Z, Pan Q L, He Y B, et al. Heat treatment of thick hot-rolled plate of 2124 alloy[J]. Journal of Central South University: Science and Technology, 2007, 38(3): 386-373.


[5]臧金鑫, 陈军洲,伊琳娜,等. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程,2019,4712):98-103.


Zang J X, Chen J Z, Yi L N, et al. Effect of ageing process on microstructure and properties of 2124 aluminum alloy thick plate [J]. Journal of Materials Engineering, 2019,4712):98-103.


[6]胥福顺, 张劲,邓运来,等. 预拉伸对2124铝合金蠕变时效形性同步的影响[J]. 中国有色金属学报,201727(1)1-7.


 Xu F S, Zhang J, Deng Y L, et al. Effect of pre-stretching on synchronization of shape and property in creep age forming of 2124 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1): 1-7.


[7]张劲, 邓运来,杨金龙,等. 2124铝合金蠕变时效实验及本构模型研究[J]. 金属学报,201349(3)379-384.


Zhang J, Deng Y L, Yang J L, et al. Experimental studies and constitutive modeling for creep aging of 2124 Al alloy[J]. Acta Metallurgica Sinica, 2013, 49(3): 379-384.


[8]聂辉文, 尹付成,聂俊红. 2124铝合金热变形的流变行为研究[J]. 特种铸造及有色合金,201333(10)887-890.


Nie H W, Yin F C, Nie J H. Rheological behavior of 2124 aluminum alloy during thermal deformation process[J]. Special Casting & Nonferrous Alloys, 2013, 33(10): 887-890.


[9]李齐飞. 2124铝合金流变规律及成形工艺优化[D]. 长沙:中南大学,2012.


Li Q F. Flow Behavior and Process Optimization of 2124 Aluminum Alloy[D]. Changsha: Central South University, 2012.


[10]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4): 1733-1759.


[11]王新云, 石婵,邓磊,等. 2024铝合金高温损伤模型的建立及其应用[J]. 塑性工程学报,201926(6)120-127.


Wang X Y, Shi C, Deng L, et al. Establishment and application of high temperature damage model for 2024 Aluminum alloy[J]. Journal of Plasticity Engineering, 2019, 26(6): 120-127.


[12]张学忠, 刘建生, 何文武, 等. 12%Cr超超临界转子钢热变形行为及高温塑性本构方程[J]. 锻压技术, 2020 45(8)184-189.


Zhang X Z, Liu J S, He W W, et al. Hot deformation behavior and high temperature plastic constitutive equation for 12% Cr ultra-supercritical rotor steel[J]. Forging & Stamping Technology, 2020, 45 (8): 184-189.


[13]Lin J G, Mohamed M, Balint D, et al. The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications[J]. International Journal of Damage Mechanics, 2014,23(5):684-701.


[14]Piccininni A, Sorgente D, Palumbo G. Genetic algorithm based inverse analysis for the superplastic characterization of a Ti-6Al-4V biomedical grade[J]. Finite Elements In Analysis & Design, 2018, 148: 27-37.


[15]傅垒, 王宝雨,林建国,等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报,201335(10)1333-1339.


Fu L, Wang B Y, Lin J G, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J], Journal of University of Science and Technology Beijing, 2013, 35(10): 1333-1339.


[16]校文超. 7075铝合金板材热塑性本构建模与热冲压关键技术研究[D]. 北京:北京科技大学,2018.


 


Xiao W C. Study of Unified Viscoplastic Constitutive Modeling and Key Technologies of Hot Stamping of 7075 Aluminum Sheet[D]. Beijing: University of Science and Technology Beijing, 2018.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9