[1]刘兵, 彭超群,王日初,等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报,2010,20(9):1705-1715.
Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715.
[2]Zheng K L, Politis D J, Wang L, et al. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components[J]. International Journal of Lightweight Materials and Manufacture, 2018,1(2): 55-80.
[3]齐国栋. 2124铝合金固溶时效对组织和性能的影响[D]. 哈尔滨:哈尔滨工业大学,2009.
Qi G D. Effects of Solution and Aging on Structure and Properties of 2124 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology, 2009.
[4]王昌臻, 潘清林,何运斌,等. 2124铝合金热扎厚板的热处理制度[J]. 中南大学学报:自然科学版,2007,38(3):386-373.
Wang C Z, Pan Q L, He Y B, et al. Heat treatment of thick hot-rolled plate of 2124 alloy[J]. Journal of Central South University: Science and Technology, 2007, 38(3): 386-373.
[5]臧金鑫, 陈军洲,伊琳娜,等. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程,2019,47(12):98-103.
Zang J X, Chen J Z, Yi L N, et al. Effect of ageing process on microstructure and properties of 2124 aluminum alloy thick plate [J]. Journal of Materials Engineering, 2019,47(12):98-103.
[6]胥福顺, 张劲,邓运来,等. 预拉伸对2124铝合金蠕变时效形性同步的影响[J]. 中国有色金属学报,2017,27(1):1-7.
Xu F S, Zhang J, Deng Y L, et al. Effect of pre-stretching on synchronization of shape and property in creep age forming of 2124 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1): 1-7.
[7]张劲, 邓运来,杨金龙,等. 2124铝合金蠕变时效实验及本构模型研究[J]. 金属学报,2013,49(3):379-384.
Zhang J, Deng Y L, Yang J L, et al. Experimental studies and constitutive modeling for creep aging of 2124 Al alloy[J]. Acta Metallurgica Sinica, 2013, 49(3): 379-384.
[8]聂辉文, 尹付成,聂俊红. 2124铝合金热变形的流变行为研究[J]. 特种铸造及有色合金,2013,33(10):887-890.
Nie H W, Yin F C, Nie J H. Rheological behavior of 2124 aluminum alloy during thermal deformation process[J]. Special Casting & Nonferrous Alloys, 2013, 33(10): 887-890.
[9]李齐飞. 2124铝合金流变规律及成形工艺优化[D]. 长沙:中南大学,2012.
Li Q F. Flow Behavior and Process Optimization of 2124 Aluminum Alloy[D]. Changsha: Central South University, 2012.
[10]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4): 1733-1759.
[11]王新云, 石婵,邓磊,等. 2024铝合金高温损伤模型的建立及其应用[J]. 塑性工程学报,2019,26(6):120-127.
Wang X Y, Shi C, Deng L, et al. Establishment and application of high temperature damage model for 2024 Aluminum alloy[J]. Journal of Plasticity Engineering, 2019, 26(6): 120-127.
[12]张学忠, 刘建生, 何文武, 等. 12%Cr超超临界转子钢热变形行为及高温塑性本构方程[J]. 锻压技术, 2020, 45(8):184-189.
Zhang X Z, Liu J S, He W W, et al. Hot deformation behavior and high temperature plastic constitutive equation for 12% Cr ultra-supercritical rotor steel[J]. Forging & Stamping Technology, 2020, 45 (8): 184-189.
[13]Lin J G, Mohamed M, Balint D, et al. The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications[J]. International Journal of Damage Mechanics, 2014,23(5):684-701.
[14]Piccininni A, Sorgente D, Palumbo G. Genetic algorithm based inverse analysis for the superplastic characterization of a Ti-6Al-4V biomedical grade[J]. Finite Elements In Analysis & Design, 2018, 148: 27-37.
[15]傅垒, 王宝雨,林建国,等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报,2013,35(10):1333-1339.
Fu L, Wang B Y, Lin J G, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J], Journal of University of Science and Technology Beijing, 2013, 35(10): 1333-1339.
[16]校文超. 7075铝合金板材热塑性本构建模与热冲压关键技术研究[D]. 北京:北京科技大学,2018.
Xiao W C. Study of Unified Viscoplastic Constitutive Modeling and Key Technologies of Hot Stamping of 7075 Aluminum Sheet[D]. Beijing: University of Science and Technology Beijing, 2018.
|